Seminar Lecture

Introduction to Structural Estimation: A Stochastic Life Cycle Model

James Zou

School of Economics (HUST)

September 29, 2017

- Introduction
- Model
- Solution Method
- Estimation
- 5 First-Step Estimation Results
- Second-Step Estimation Results
- Data
- Model Extension
- Reference

Structural Estimation

- "Structural estimation is a methodological approach in empirical economics explicitly based on economic theory. A requirement of structural estimation is that economic modeling, estimation, and empirical analysis be internally consistent."
- "Structural estimation can be defined as theory-based estimation: the objective of the exercise is to estimate an explicitly specified economic model that is broadly consistent with observed data."

Why Structural Model?

- Theoretical model can not make quantitate predictions, even often can not make qualitive predictions.
- Numerical simulations rely on parameter assumptions. Its predictions are not reliable.
- Reduced form methods lack theoretical foundation, and can not make counterfactual simulation and welfare analysis.

Why Structural Estimation?

- With a structural model, we have two branches of method:
 - Calibration
 - Estimation: include MSM, SML, SMD, Indirect Inference, and Bayesian estimation.
- Estimation is more reliable than calibration.
- MSM (or SMM) is a general approach to estimate dynamic stochastic model.

Stochastic Life Cycle Model

- Stochastic life cycle model is a branch of general models that research agents life cycle behavioral, include consumption, wealth accumulation, health insurance, portfolio choice, retirement, tax policy etc.
- It perfectly connects economic theory, econometrics, and micro data.

For this seminar

- We will introduce a basic stochastic life cycle model and use the method of simulated moment (MSM) to estimate the model.
- We want to use this method to research the consumption effect and labor supply effect of the China Public Institutions Reform, analyze its welfare effect and do counterfactual simulation.

Preferences

We assume that preferences take the form

$$u(C_t) + E_t \{ \sum_{j=t+1}^{T} \beta^{j-t} u(C_j) + \beta^{T+1-t} b(A_{T+1}) \}$$

The within-period utility function is of the form

$$u(C_t) = \frac{C_t^{1-\rho}}{1-\rho}$$

ullet workers who die value bequests of assets, A_t , according to the function

$$b(A_t) = \theta \frac{(A_t + k \cdot P_t)^{1-\rho}}{1-\rho}$$

Constraints

• The asset accumulation equation is

$$A_{t+1} = R(A_t - C_t) + Y_{t+1}$$

• where $A_t \geqslant 0$

Income Dynamic

ullet The income consist of permanent component P_t , and transitory component U_t

$$Y_t = P_t U_t$$
$$P_t = G_t P_{t-1} N_t$$

• where U_t and N_t are both independently and identically log-normally distributed, $lnU_t \sim N(0,\sigma_u^2)$, $lnN_t \sim N(0,\sigma_n^2)$,

Recursive Formulation

In recursive form, the individuals problem can be written as

$$V_t(X_t) = \max\{u(C_t) + \beta E_t V_{t+1}(X_{t+1})\}\$$

or

$$V_t(A_t, P_t) = \max\{u(C_t) + \beta E_t V_{t+1}(A_{t+1}, P_{t+1})\}$$

 normalize the necessary variables by dividing them by permanent income, we can get:

$$V_t(a_t) = \max\{u(c_t) + \beta E_t(G_{t+1}N_{T+1})^{1-\rho}V_{t+1}(a_{t+1})\}\$$

Optimal Consumption Behavior

• use the permanent component of income to normalize

$$a_{t+1} = \frac{R(a_t - c_t)}{G_{t+1}N_{t+1}} + U_{t+1}$$

The following Euler equation holds

$$u'(c_t(a_t)) = \beta RE[u'(c_{t+1}(a_{t+1})G_{t+1}N_{t+1})]$$

• c_{T+1} , is linear in a_{T+1} :

$$c_{T+1} = \gamma_0 + \gamma_1 a_{T+1}$$

• The solution to the consumer problem consists of a set of consumption rules $\{c_t(a_t)\}_{1 \le t \le T}$

Gauss-Hermite Quadrature

Gauss-Hermite Quadrature

$$u'(c_t(a_t)) = \beta R E[u'(c_{t+1}((a_t - c_t) \frac{R}{G_{t+1}N} + U)G_{t+1}N)]$$

$$\approx \sum_{i,j} f_t(n_i, u_j)w_{ij}$$

where

$$f_t(n,u) = \frac{1}{\pi} u'(c_{t+1}((a_t - c_t) \frac{R}{G_{t+1}} e^{-\sqrt{2}\sigma_n n} + e^{\sqrt{2}\sigma_u u}) G_{t+1} e^{\sqrt{2}\sigma_n n})$$

• $w_{i,j}$ are the weights, and n_i , u_j are nodes

The Method of Endogenous Gridpoints

- $x_t = a_t c_t$, discretize x_t into $\{x_k\}(k = 1, 2...K)$
- $\bullet \ \text{get} \ c_k^* \text{, and} \ a_k^* = c_k^* + x_k$
- use linear interpolation method to get $\{c_t(a_t)\}$

Moment Conditions

- we employ a two-stage estimation procedure, we use additional data and moments to estimate χ in a first stage.
- by making the simulated moments as close as possible to theoretical mements

$$g_t(\theta; \hat{\chi}) = \frac{1}{N_t} \sum_{i=1}^{N_t} ln \hat{C}_{i,t}(\theta; \hat{\chi}) - ln \bar{C}_t$$

• Our second-stage estimation procedure is then a method of simulated moments estimator (MSM) that minimizes over θ :

$$\hat{\theta} = argmin \ g(\theta; \hat{\chi})'Wg(\theta; \hat{\chi})$$

Asymptotic Variance Covariance Matrix

ullet θ is is distributed asymptotically as normal distribution:

$$var(\hat{\theta}) = \frac{1+\tau}{N} (G'_{\theta}WG_{\theta})^{-1} G'_{\theta}WVWG_{\theta} (G'_{\theta}WG_{\theta})^{-1}$$

• And the statistic is distributed asymptotically as Chi-squared with $T-\#\theta$ degrees of freedom:

$$\chi = \frac{N}{1 + \tau} g(\hat{\theta}; \hat{\chi})' W g(\hat{\theta}; \hat{\chi})$$

Equally-Weighted Minimum Distance Estimator

- Run a regression $lnY_{it} = f(X_{it}) + y_{it}$
- ullet Decompose residual y_{it}

$$y_{it} = p_{it} + u_{it}, u_{it} \sim N(0, \sigma_u^2)$$
$$p_{it} = g_{it} + p_{it-1} + n_{it}, n_t \sim N(0, \sigma_n^2)$$

Take first order difference

$$\Delta y_{it} = g_{it} + n_{it} + u_{it} - u_{it-1}$$

• Use the variance and covariance of Δy_{it} to generate moments for estimation

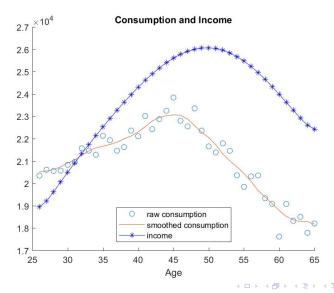
$$var(\Delta y_{it}) = \sigma_n^2 + 2\sigma_u^2$$
$$cov(\Delta y_{it}, \Delta y_{it-1}) = -\sigma_u^2$$

. . .

First-Step Parameter

Table 1	
Parameter	Value
R	1.0344
σ_u^2	0.044
$\sigma_n^{\widetilde{2}}$	0.0212
$ar{w}$	-2.794
σ_w	1.784

Income and Cunsumption Profile

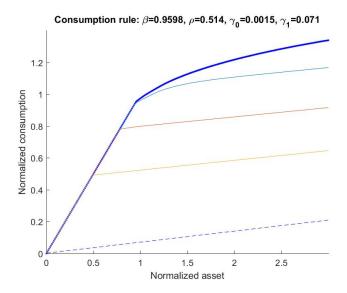


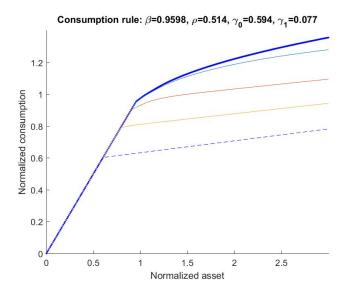
Estimation Result

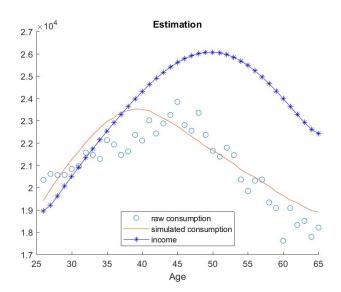
Table 2

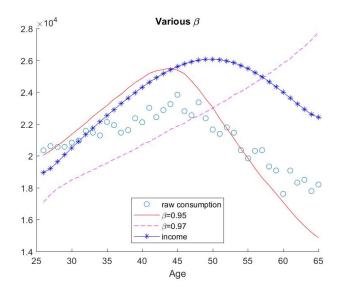
Table 2	
MSM Estimation	Equally Weighting
β	0.9596
	(0.0511)
ho	0.5403
	(0.2140)
γ_0	0.0006
	(0.0002)
γ_1	0.0758
	(0.0273)
$\chi^{2}(36)$	128.8

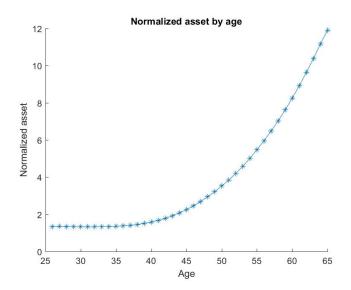
Standard errors in parentheses







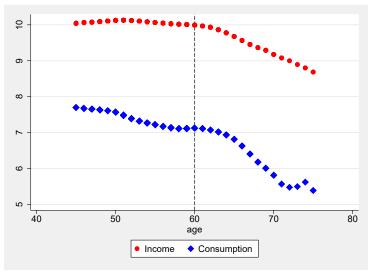




Data

- CHARLS 2011-2013-2015 data
- hould comsunption C: exclude medical expenditure, education and training
- household income Y: household wage income
- keep $45 \leqslant age \leqslant 75$

Income and Consumption Profiles



Equally-Weighted Minimum Distance Estimator

- $\Delta y_{it} = (\Delta_2 y_{i,2013}, \Delta_2 y_{i,2015}, \Delta_4 y_{i,2015})'$
- Moment condition: $E(m_k m_j)$, $k, j \in \{1, 2, 3\}$
- Then we can get six moment condition

Missing Data

- $d_i = (d_{i,2011}, d_{i,2013}, d_{i,2015})$ and $d_{it} = 1\{\Delta y_{it} \text{ is not missing}\}.$
- we can drive

$$m = vech\{(\sum_{i=1}^{N} \Delta y_i \Delta y_i') \oslash (\sum_{i=1}^{N} d_i d_i')\}$$

Health status and Medical expense

The within-period utility function is of the form

$$u(C_t, H_t) = \delta(H_t) \frac{C_t^{1-\rho}}{1-\rho}$$

Health status

$$\pi_{j,k} = P(H_{t+1} = k | H_t = j), j, k \in \{1, 0\}$$

- Survival rate s_t
- ullet Medical expense M_t is

$$lnM_t = m(H_t, t) + \sigma(H_t, t)\psi_t$$

government transfers

$$Tr_t = max\{0, \underline{C} + M_t - (A_t + Y_t)\}\$$

Labor Supply

The within-period utility function is of the form

$$u(C_t, L_t) = \frac{(C_t^{\gamma} L_t^{\gamma})^{1-\rho}}{1-\rho}$$

The asset accumulation equation is

$$A_{t+1} = RA_t + W_t(L - L_t) - C_t$$

wage dynamic

$$lnW_t = \alpha lnN_t + \omega_t$$

Portfolios Choice

cash on hand evolves as

$$X_{t+1} = (1 + r_{t+1}^e)S_t + (1+r)B_t + Y_{t+1}$$

• the excess return of the risky asset is assumed to be i.i.d.:

$$r_{t+1}^e - r = \mu + \varepsilon_{t+1}$$

Reference

- Gourinchas, PierreOlivier, and Jonathan A. Parker. "Consumption over the life cycle." Econometrica 70.1 (2002): 47-89.
- Cagetti, Marco. "Wealth accumulation over the life cycle and precautionary savings." Journal of Business & Economic Statistics 21.3 (2003): 339-353.
- French, Eric. "The effects of health, wealth, and wages on labour supply and retirement behaviour." The Review of Economic Studies 72.2 (2005): 395-427.
- Laibson, David, Andrea Repetto, and Jeremy Tobacman. Estimating discount functions with consumption choices over the lifecycle. No. w13314. National Bureau of Economic Research, 2007.
- De Nardi, Mariacristina, Eric French, and John B. Jones. "Why do the elderly save? The role of medical expenses." Journal of Political Economy 118.1 (2010): 39-75.

Reference

- French, Eric, and John Bailey Jones. "The Effects of Health Insurance and SelfInsurance on Retirement Behavior." Econometrica 79.3 (2011): 693-732.
- Alan, Sule. "Do disaster expectations explain household portfolios?."
 Quantitative Economics 3.1 (2012): 1-28.
- De Nardi, Mariacristina, Eric French, and John Bailey Jones.
 "Medicaid insurance in old age." The American Economic Review 106.11 (2016): 3480-3520.
- Blundell, Richard, Luigi Pistaferri, and Itay Saporta-Eksten.
 "Consumption inequality and family labor supply." The American Economic Review 106.2 (2016): 387-435.
- Blundell, Richard, et al. "Female labor supply, human capital, and welfare reform." Econometrica 84.5 (2016): 1705-1753.

