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Calculus of variations (变分法)

Calculus of variations (变分法)

A field of mathematical analysis that deals with maximizing or
minimizing functionals, which are mappings from a set of
functions to the real numbers.
Functionals are often expressed as definite integrals involving
functions and their derivatives. (e.g., the famous shortest (in time)
path problem)
The Euler-Lagrange equation provides a necessary condition
for finding extrema.
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Calculus of variations (变分法) Euler-Lagrange equation

Euler-Lagrange equation

Intuition: Finding the extrema of functionals is similar to finding the
maxima and minima of functions. This tool provides a link between
them to solve the problem. Consider the functional

J[y] =
∫ x2

x1
L
(
x, y(x), y ′(x)

)
dx, (1)

where
x1, x2 are constants.
y(x) is twice continuously differentiable.
y ′(x) = dy

dx .
L (x, y(x), y′(x)) is twice continuously differentiable with respect to
all arguments x, y, and y ′.
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Calculus of variations (变分法) Euler-Lagrange equation

Euler-Lagrange equation (Continued)

If J [y] attains a local minimum at f, and η(x) is an arbitrary function
that has at least one derivative and vanishes at the endpoints x1 and
x2, then for any number ε → 0, we must have

J [f ] ≤ J [f + εη] . (2)

Term εη is called the variation of the function f. Now define

Φ(ε) = J[f + εη]. (3)

Since J [y] has a local minimum at y = f, it must be the case that Φ(ε)
has a minimum at ε = 0 and thus

Φ′(0) =
dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0. (4)
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Calculus of variations (变分法) Euler-Lagrange equation

Euler-Lagrange equation (Continued)
Now taking total derivative of L [x, f + εη, (f + εη)′], we have:

dL
dε =

∂L
∂y η +

∂L
∂y ′ η

′. (5)

Inserting (5) into (4) gives us

0 =

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

=

∫ x2

x1

(
∂L
∂f η +

∂L
∂f ′ η

′
)

dx

=

∫ x2

x1

(
∂L
∂f η − η

d( ∂L
∂f ′ )

dx

)
dx + ∂L

∂f ′ η
∣∣∣∣x2
x1

=

∫ x2

x1
η

(
∂L
∂f −

d( ∂L
∂f ′ )

dx

)
dx,

where the last lines uses integration by parts and the fact that η
vanishes at x1 and x2.
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Calculus of variations (变分法) Euler-Lagrange equation

Euler-Lagrange equation (Continued)
Now given ∫ x2

x1
η

(
∂L
∂f −

d( ∂L
∂f ′ )

dx

)
dx = 0, (6)

the fundamental lemma of calculus of variations makes sure that

∂L
∂f −

d( ∂L
∂f ′ )

dx = 0 (7)

must hold!

However, it is possible to attain (7) based on (6) without applying
the lemma!
A special form of η?

How about η(x) equals −(x − x1)(x − x2)
[
∂L
∂f −

d( ∂L
∂f ′ )

dx

]
for

x ∈ [x1, x2] and 0 for x ̸∈ [x1, x2]?
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Calculus of variations (变分法) Euler-Lagrange equation
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Calculus of variations (变分法) Euler-Lagrange equation

Euler-Lagrange equation (Continued)

How does (7) degenerate if y ′ is not an argument of L?
Homework: based on equation (2.16) in your textbook, try to
derive (2.17).
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Calculus of variations (变分法) Euler-Lagrange equation

A simple exercise

Consider the following problem:

max[c(t),a(t)]1t=0

∫ 1
0 e−ρtu(c(t))dt, (8)

subject to ȧ(t) = ra(t) + ω − c(t), a(0) = a0, a(1) = 0. (9)

where r and ω are exogenously defined constants.
Deduce the Euler-Lagrange equation for the problem above.
Rearrange your result above to give the Euler equation usually
used in your textbooks, u′′(c(t))ċ(t)

u′(c(t)) = ρ− r, namely, along the
household’s optimal path, the growth rate of its marginal utility of
consumption should be equal to the gap between the discount rate
ρ and interest rate r.
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Calculus of variations (变分法) Euler-Lagrange equation

Another exercise: the Brachistochrone Curve

The famous Brachistochrone Problem: given two points (x0, y0) and
(x1, y1) with x0 < x1 and y0 > y1 in a two-dimensional world with
gravitational acceleration g and without frictions . Find a smooth path
that connects these points and makes the travel time from (x0, y0) to
(x1, y1) the shortest.
The problem above is transformed into a mathematical one:

min
y(x)

J(y) =
∫ x1

x0

√
1 + [y′(x)]2√

2g[y0 − y(x)]
dx (10)

subject to y(x0) = y0, y(x1) = y1. (11)

Check out
http://mathworld.wolfram.com/BrachistochroneProblem.html for
a detailed introduction to this problem!
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Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle

Mainly developed by Pontryagin and his group.
A Hamiltonian method that generalizes the Euler-Lagrange
equation above.
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments
Problem A1:

max
x(t),y(t),x1

W(x(t), y(t)) =
∫ t1

0
f(t, x(t), y(t)) dt , (12)

subject to ẋ(t) = g(t, x(t), y(t)), (13)
x(0) = x0, and x(t1) = x1. (14)

Other settings:
Continuous differentiability of functions are assumed again.
the value of the state variable at the terminal of the horizon, x(t1),
is flexible in this problem.
We ignore here the trivial requirements stating that the values of
x(t) and y(t) should always be in some sets X ,Y ∈ R for all t.
We suppose there exists an interior solution (x̂(t), ŷ(t)), and focus
on the necessary conditions for a solution.
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)

Take a variation of function ŷ(t):

y(t, ϵ) = ŷ(t) + ϵ η(t). (15)

Note that given y(t, ϵ), x(t) is now dependent on ϵ according to
evolutionary equation (13), so the resulting x(t, ϵ) is defined by:

ẋ(t, ϵ) = g(t, x(t, ϵ), y(t, ϵ)) for all t ∈ [0, t1], with x(0, ϵ) = x0. (16)

Define:

W(ϵ) = W(x(t, ϵ), y(t, ϵ))

=

∫ t1

0
f(t, x(t, ϵ), y(t, ϵ)) dt. (17)
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)

Since x̂(t), ŷ(t) solve the optimal control problem, we must have:

W(ϵ) ≤ W(0) for all small engough ϵ → 0. (18)

Now recall that, g(t, x(t, ϵ), y(t, ϵ))− ẋ(t, ϵ) = 0 holds for all t. Then for
any function λ : [0, t1] → R, we must have:∫ t1

0
λ(t)[g(t, x(t, ϵ), y(t, ϵ))− ẋ(t, ϵ)] dt = 0. (19)

Function λ(t) is called the costate variable, with an interpretation
similar to the Lagrange multipliers in standard (static) optimization
problems.
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)

Combining (17) and (19) lets us redefine W(ϵ):

W(ϵ) =

∫ t1

0

f(t, x(t, ϵ), y(t, ϵ)) dt + 0

=

∫ t1

0

{f(t, x(t, ϵ), y(t, ϵ))+λ(t)[g(t, x(t, ϵ), y(t, ϵ))−ẋ(t, ϵ)]}dt

=

∫ t1

0

{f(t, x(t, ϵ), y(t, ϵ))+λ(t)g(t, x(t, ϵ), y(t, ϵ))+λ̇(t)x(t, ϵ)}dt

−λ(t1)x(t1, ϵ) + λ(0)x0. (20)

The last equality above uses integration by parts.
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)

Applying Leibniz’s Rule to (20) yields:

W ′(ϵ) =

∫ t1

0

[
fx(t, x(t, ϵ), y(t, ϵ))+λ(t)gx(t, x(t, ϵ), y(t, ϵ))+λ̇(t)

]
xϵ(t, ϵ)dt

+

∫ t1

0

[fy(t, x(t, ϵ), y(t, ϵ)) + λ(t)gy(t, x(t, ϵ), y(t, ϵ))] η(t)dt

−λ(t1)xϵ(t1, ϵ) (21)

Recall that condition (18) can be rewritten as W ′(0) = 0. We thus
have:

0 =

∫ t1

0

[
fx(t, x̂(t), ŷ(t))+λ(t)gx(t, x̂(t), ŷ(t))+λ̇(t)

]
xϵ(t, 0)dt

+

∫ t1

0

[fy(t, x̂(t), ŷ(t)) + λ(t)gy(t, x̂(t), ŷ(t))] η(t)dt

−λ(t1)xϵ(t1, 0) (22)
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)
Treating λ(t1)xϵ(t1, 0)

(22) must hold for any continuously differentiable λ(t).
we simply focus on a class of costate variables satisfying

λ(t1) = 0 (23)

As a result, λ(t1)xϵ(t1, 0) = 0.
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)
Treating

∫ t1
0

[
fx(t, x̂(t), ŷ(t))+λ(t)gx(t, x̂(t), ŷ(t))+λ̇(t)

]
xϵ(t, 0)dt

Besides λ(t1) = 0 as illustrated above, can we add more
requirements on the costate variable?
Again, since (22) must hold for any continuously differentiable
λ(t), why not focus on the following λ(t):

λ̇(t) = − [fx(t, x̂(t), ŷ(t))+λ(t)gx(t, x̂(t), ŷ(t))] , (24)
λ(t1) = 0
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)
Treating

∫ t1
0

[fy(t, x̂(t), ŷ(t)) + λ(t)gy(t, x̂(t), ŷ(t))] η(t)dt

Given the costate λ(t) defined above, equality∫ t1
0 [fy(t, x̂(t), ŷ(t)) + λ(t)gy(t, x̂(t), ŷ(t))] η(t)dt = 0 must hold for

arbitrary η(t).
Applying the fundamental lemma of calculus of variations yields:

fy(t, x̂(t), ŷ(t)) + λ(t)gy(t, x̂(t), ŷ(t)) = 0 for all t ∈ [0, t1] (25)
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)

Theorem
Suppose Problem A1 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable costate λ(t) defined on
[0, t1], such that (13), (23), (24), and (25) hold.
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Pontryagin’s Maximum Principle Variational Arguments

Problem A2

max
x(t),y(t)

W(x(t), y(t)) =
∫ t1

0
f(t, x(t), y(t)) dt ,

subject to ẋ(t) = g(t, x(t), y(t)), (26)
x(0) = x0, and x(t1) = x1.

Theorem
Suppose Problem A2 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable costate λ(t) defined on
[0, t1], such that (26), (24), and (25) hold.

Can you figure out how and why Theorem 2 differs from Theorem 1?
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Pontryagin’s Maximum Principle Variational Arguments

Revisiting the simple exercise

Consider the following problem:

max[c(t),a(t)]1t=0

∫ 1
0 e−ρtu(c(t))dt, (27)

subject to ȧ(t) = ra(t) + ω − c(t), a(0) = a0, a(1) = 0. (28)

where r and ω are exogenously defined constants.
Use the Pontryagin’s Maximum Principle (Theorem 4 above) to
get the same results (Euler equation) as before.
Given u(c) = log(c), can you solve the problem above? What if
u(c) =

[
θ − e−βc(t)]?
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Pontryagin’s Maximum Principle Variational Arguments

Problem A3

max
x(t),y(t)

W(x(t), y(t)) =
∫ t1

0
f(t, x(t), y(t)) dt ,

subject to ẋ(t) = g(t, x(t), y(t)), (29)
x(0) = x0, and x(t1) ≥ x1.

Theorem
Suppose Problem A3 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable costate λ(t) defined on
[0, t1], such that (29), (24), (25), and λ(t1)[x(t1)− x1] = 0 hold.

Can you figure out how and why Theorem 3 differs from Theorem 1?
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Pontryagin’s Maximum Principle Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle
Revisit Problem A1. Define the Hamiltonian:

H(t, x(t), y(t), λ(t)) ≡ f(t, x(t), y(t)) + λ(t)g(t, x(t), y(t)). (30)

Theorem
Suppose Problem A1 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable function λ(t) such that
the following necessary conditions hold:

λ̇(t) = −Hx(t, x̂(t), ŷ(t), λ(t)) for all t ∈ [0, t1], (31)
ẋ(t) = Hλ(t, x̂(t), ŷ(t), λ(t)) for all t ∈ [0, t1], (32)

H(t, x̂(t), ŷ(t), λ(t)) ≥ H(t, x̂(t), y, λ(t)) for all feasible y, t, (33)
x(0) = x0, λ(t1) = 0. (34)

Question: relationship between (25) and (33)?
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Pontryagin’s Maximum Principle Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle (Continued)

The results of equations (31)-(34) are straightforward to
understand given the variational arguments illustrated earlier.
Can you figure out the Pontryagin’s Maximum Principle for
Problems A2 and A3?
(important) In all problems so far, we have both x and y
one-dimensional variables. The Pontryagin’s maximum Principle
also applies to scenarios where x and y are actually vectors of state
and control variables, respectively. In these cases, it may be
necessary to introduce more than one costate variables, e.g.,
λ1(t), · · · , λk(t) into the Hamiltonian. For instance, if the
evolutionary equation becomes ẋ = g1(·) and d2x

dt2 = g2(·). We
actually have two state variables here: x = (x, ẋ).
So far only necessary conditions discussed. Sufficient conditions?
It suffices to have some degree of concavity of H(t, x, y, λ) in (x, y).
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Pontryagin’s Maximum Principle Infinite Horizon

Infinite Horizon Problem

Consider Problem A4:

max
x(t),y(t)

W(x(t), y(t)) =
∫ ∞

0
f(t, x(t), y(t)) dt , (35)

subject to ẋ(t) = g(t, x(t), y(t)), (36)
x(0) = x0, and lim

t→∞
b(t)x(t) ≥ x1.

Notice: When the integral is defined on an unbounded interval, we
need more assumptions (related to the dominated convergence
theorem) on the integrability of some functions for the Leibniz’s Rule
to apply. However, these details are trivial and almost always satisfied
in economic applications.
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Pontryagin’s Maximum Principle Infinite Horizon

Infinite Horizon Problem (continued)

Theorem
Suppose Problem A4 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable function λ(t) such that
the following necessary conditions hold:

λ̇(t) = −Hx(t, x̂(t), ŷ(t), λ(t)) for all t ∈ R+, (37)
ẋ(t) = Hλ(t, x̂(t), ŷ(t), λ(t)) for all t ∈ R+, (38)

H(t, x̂(t), ŷ(t), λ(t)) ≥ H(t, x̂(t), y, λ(t)) for all feasible y, t, (39)
x(0) = x0, lim

t→∞
b(t)x(t) ≥ x1. (40)
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Pontryagin’s Maximum Principle Current-Value Hamiltonian

Current-Value Hamiltonian

Consider Problem A5:

max
x(t),y(t)

W(x(t), y(t)) =
∫ ∞

0
e−ρtf(x(t), y(t)) dt , (41)

subject to ẋ(t) = g(t, x(t), y(t)), (42)
x(0) = x0, and lim

t→∞
b(t)x(t) ≥ x1.

The Hamiltonian is:

H(t, x(t), y(t), λ(t)) = e−ρt [f(x(t), y(t)) + eρtλ(t)g(t, x(t), y(t))
]

(43)

Define function µ(t) ≡ eρtλ(t). The current-value Hamiltonian is
thus defined as

Ĥ(t, x(t), y(t), µ(t)) ≡ f(x(t), y(t)) + µ(t)g(t, x(t), y(t)). (44)
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Pontryagin’s Maximum Principle Current-Value Hamiltonian

Current-Value Hamiltonian(continued)

Theorem
Suppose Problem A5 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable function µ(t) such that
the following conditions hold:

Ĥy(t, x̂(t), ŷ(t), µ(t)) = 0 for all t ∈ R+, (45)
ρµ(t)− µ̇(t) = Ĥx(t, x̂(t), ŷ(t), µ(t)) for all t ∈ R+, (46)

ẋ(t) = Ĥµ(t, x̂(t), ŷ(t), µ(t)) for all t ∈ R+, (47)
lim

t→∞
[e−ρtµ(t)x̂(t)] = 0 (48)

x(0) = x0, lim
t→∞

b(t)x̂(t) ≥ x1. (49)

(48) is a simplified version of the Transversality Condition for
optimization problems with an infinite horizon.

Xu & Yi (HUST) Advanced Macroeconomics Supplementary Notes 28 / 30



Pontryagin’s Maximum Principle Homework

Homework

Try your best to understand:
Example 7.1 (page 233), Example 7.3 (page 252), and Section 7.8:
The q-theory (page 269) in Acemoglu (2008).
Or examples between pages 641-643, and Section 20.5 (page 649)
in Chiang and Wainwright (2005). Note that the notations used in
these books are different.
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