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(a) Richard E. Bellman (1920-1984) (b) Lev S. Pontryagin (1908-1988)

Figure 1: Two pioneers.
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Dynamic Programming：the Problems Canonical Form

Canonical Discrete-Time Infinite-Horizon Optimization
Problem
Canonical form of the problem:

sup
{x(t),y(t)}∞t=0

∞∑
t=0

βtŨ(t, x(t), y(t)) (1)

subject to y(t) ∈ G̃(t, x(t)) for all t ≥ 0, (2)
x(t + 1) = f̃(t, x(t), y(t)) for all t ≥ 0, (3)
x(0) given. (4)

“sup” interchangeable with “max” within the note. β ∈ [0, 1).
x(t) ∈ X ⊂ RKx : state variables (state vector), y(t) ∈ Y ⊂ RKy :
control variables (control vector). Kx,Ky ≥ 1.
instantaneous payoff function Ũ : Z+ × X × Y → R. Objective
function:

∑∞
t=0 β

tŨ(t, x(t), y(t)). Correspondence G̃ : Z+ × x ⇒ Y.
Ming Yi (Econ@HUST) Doctoral Macroeconomics Notes on D.P. & O.C. 4 / 61



Dynamic Programming：the Problems Problem A2

Problem A1

The canonical form is rewritten as Problem A1:

V∗(0, x(0)) = sup
{x(t)}∞t=0

∞∑
t=0

βtU(t, x(t), x(t + 1)) (5)

subject to x(t + 1) ∈ G(t, x(t)) for all t ≥ 0, (6)
x(0) given. (7)

Problem A1 is identical to the canonical problem above.
New expression, why bother?
V∗(0, x(0)) obtained upon optimal plan {x∗(t + 1)}∞t=0 ∈ X∞.
What if symbol ∞ is replaced by some T ∈ Z+?
Based on G̃, Ũ, f̃, the definitions of G, U, and V∗ are trivial.
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Dynamic Programming：the Problems Problem A2

Problem A1 (Continued)

Problem A1:

V∗(0, x(0)) = sup
{x(t)}∞t=0

∞∑
t=0

βtU(t, x(t), x(t + 1))

subject to x(t + 1) ∈ G(t, x(t)) for all t ≥ 0,

x(0) given.

Try to define G(t, x(t)).

G(t, x(t)) = {̃f(t, x(t), y(t)) ∈ X | yt ∈ G̃(t, x(t))}
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Dynamic Programming：the Problems Problem A2

Problem A2

In this note, we focus only on Problem A2:

V∗(x(0)) = sup
{x(t)}∞t=0

∞∑
t=0

βtU(x(t), x(t + 1)) (8)

subject to x(t + 1) ∈ G(x(t)) for all t ≥ 0, (9)
x(0) given. (10)

Problem A2 is a stationary form of Problem A1: U and G do not
explicitly depend on time.
Stationary dynamic programming.
Applicable to most economic applications.
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Bellman Equation Problem A3

Problem A3

Let us consider Problem A3:

V(x) = sup
y∈G(x)

{U(x, y) + βV(y)}, for all x ∈ X. (11)

The recursively defined V(x) is called Bellman Equation.
The previous problem of finding a sequence {x∗(t + 1)}∞t=0 is
replaced by the problem of finding a function V(x).
V(·) is called value function.
Define policy function π(·) by y∗ = π(x).
So V(x) = U(x, π(x)) + βV(π(x)).
Once the value function is known, it is straightforward to induce
the policy function.
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Bellman Equation Problem A3

An Example

The problem is given in the canonical form:

max
{k(t),c(t)}∞t=0

∞∑
t=0

βtu(c(t)),

subject to k(t + 1) = f(k(t)) + (1− δ)k(t)− c(t),

where k(t) ≥ 0, c(t) ≥ 0, and k(0) > 0 is given. u : R+ → R.

Try to transform the canonical problem above to Problem A2 and A3.
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Bellman Equation Problem A3

V∗ satisfies Bellman Equation
Recalling the relationship between V∗(x(0)) and {x∗(t + 1)}∞t=1 in
Problem A2:

V∗(x(0)) =
∞∑

t=0

βtU(x∗(t), x∗(t + 1)) (12)

= U(x(0), x∗(1)) + β

∞∑
s=0

βsU(x∗(s + 1), x∗(s + 2)) (13)

= U(x(0), x∗(1)) + βV∗(x∗(1)) (14)
= sup

y∈G(x(0))
{U(x(0), y) + βV∗(y)}, ∀x(0) ∈ X. (15)

Equation (14): An optimal plan from t = 0 must also be an
optimal plan from t = 1.
Equation (15): An optimal plan solves the optimization problem.
x∗(t + 1) = π(x∗(t)) holds for all t.
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Bellman Equation Problem A3

Is V satisfying Bellman Equation also V∗?

Important assumtions:
(i) X is compact in RK (closed and bounded), U(·) is continuous.
(ii) U(·) is concave.
(iii) U(·, y) is strictly increasing in its first K arguments.
(iv) U is continuously differentiable in the interior of its domain XG.
Their functions:

(i) guarantees a V(·) exists. (ii) further ensures the uniqueness of a
V(·). (iii) and (iv) add further properties, such as continuity and
differentiability, to V(·).
So, given the uniqueness, we know that V(·) satisfying the
Bellman equation is also V∗ solving Problem A2.
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Bellman Equation Problem A3

Bellman Equation

We have shown that, under pretty weak assumptions, finding the
V∗(·) in Problem A2 is equivalent to finding the V(·) in Problem
A3.
We haven’t answer the question: Is it easier or more convenient to
search for V(·) instead of V∗(·)?

To answer the question above, as well as to unfold the beauty of
the Bellman Equation, we should take a detour by spending some
(rewarding) time on contraction mapping.
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Bellman Equation Contraction Mapping

Newton’s Method: A Taste

How to approximate x =
√
5?

Newton, in 1669, tried this:

x =
√
5 ⇒ f(x) = x2 − 5 = 0 ⇒ x = x − f(x)

f ′(x)

What if we calculate xn+1 = xn − f(xn)
f ′(xn)

= xn − x2n−5
2xn

iteratively?
Given x1 = 2, we have x2 = 2.25, x3 = 2.23611111,
x4 = 2.2360679779, x5 = 2.23606797749978969644, · · ·
this method is obviously applicable to many equation-solving
scenarios.
We will show that the method here is a contraction mapping on a
properly defined domain.
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Bellman Equation Contraction Mapping

Contraction Mapping

Definition 1
Let (S, d) be a metric space and T : S → S be an operator mapping S
into itself. If for some β ∈ (0, 1),

d(Tz1,Tz2) ≤ βd(z1, z2) for all z1, z2 ∈ S,

Then T is a contraction mapping (with modulus β).

A contraction mapping makes any couple of elements closer.
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Bellman Equation Contraction Mapping

Contraction Mapping (Continued)

Theorem 1
(Contraction Mapping Theorem) Let (S, d) be a complete metric space
and suppose that T : S → S is a contraction mapping. Then T has a
unique ẑ ∈ S such that

Tẑ = ẑ.
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Bellman Equation Contraction Mapping

Contraction Mapping (Continued)

The formal proof of Theorem 1 is omitted here. The intuition,
however, is quite straightforward: Starting from any given point in
S, impose T infinitely many times. As the contraction mapping
makes the adjacent pair of points closer and closer, the resulting
Cauchy sequence must converges to a point in a complete space.

Don’t worry about the requirement “complete”. The spaces
usually dealt with in Economics are all complete: the Euclidean
space, the space of continuous real-valued function on a compact
set, and so on.
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Bellman Equation Contraction Mapping

Contraction Mapping (Continued)

Theorem 2
(Applications of Contraction Mappings) Let (S, d) be a complete metric
space and T : S → S be a contraction mapping with Tẑ = ẑ.
(a) If S′ is a closed subset of S, and T(S′) ⊂ S′, then ẑ ∈ S′.
(b) Moreover, if T(S′) ⊂ S′′ ⊂ S′, then ẑ ∈ S′′.

These results are irrelevant to the main materials in this note.
Question: If you have the opportunity to draw a pretty precise
map of China and spread it out on the square in front of the
school building, are you capable of finding a point, if any, on the
map, that coincides with its corresponding geographical location
on the earth?
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Bellman Equation Contraction Mapping

Newton’s Method Revisited

Define g(x) = x − f(x)
f ′(x) . Then f(x̂) = 0 ⇒ g(x̂) = x̂ =

√
5. Furthermore,

with f(x) = x2 − 5, we have

|g(x)− g(
√
5)| = |g(x)−

√
5| = |x −

√
5||

√
5x − 5

2
√
5x

|, for x ∈ R+. (16)

With x1 being close to
√
5, g(·) is a contraction mapping within

some subspace of (R+, | · |)!
The initialization point chosen in Newton’s method is crucial.
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Bellman Equation Bellman Equation and Contraction Mapping

Bellman Equation and Contraction Mapping

Recall the Bellman equation:

V(x) = sup
y∈G(x)

{U(x, y) + βV(y)}, for all x ∈ X. (17)

= TV(x), for all x ∈ X, (18)

where the second equality defines operator T.
We will show that T is a contraction mapping.
Space for T to operate: all bounded functions defined on X.
So T is a functional: It maps a function to another.
How should we choose the metric, d(·), of the space?
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Bellman Equation Bellman Equation and Contraction Mapping

Define the Metric

For functions f, g defined on X, the supremum norm is used for metric:

d(f, g) = ∥f − g∥ = sup
x∈X

|f(x)− g(x)| (19)

The “distance” between two functions defined on X is determined
by the greatest “gap” between the two functions on X.
You can, of course, adopt other kinds of metrics. But any well
defined norm will prove the same result as the supremum norm
does.
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Bellman Equation Bellman Equation and Contraction Mapping

Prove T is a Contraction Mapping

Proposition 1
Let X ∈ RK and B(X) be the space of bounded functions f : X → R
defined on X, equipped with the supremum norm ∥ · ∥, Define mapping
T : B(X) → B(X) by

(Tf)(x) = sup
y∈G(x)

{U(x, y) + βf(y)}, ∀x ∈ X, ∀f ∈ B(X).

Then T is a contraction mapping.
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Bellman Equation Bellman Equation and Contraction Mapping

Prove T is a Contraction Mapping (Continued)
Proof: Given f, g ∈ B(X),

f(x)− g(x) ≤ |f(x)− g(x)| ≤ ∥f − g∥ ∀x ∈ X (20)
⇒ f(x) ≤g(x) + ∥f − g∥ ∀x ∈ X (21)
⇒ (Tf)(x) = sup

y∈G(x)
{U(x, y) + βf(y)} ∀x ∈ X

≤ sup
y∈G(x)

{U(x, y) + βg(y) + β∥f − g∥} ∀x ∈ X

⇒ (Tf)(x) ≤ (Tg)(x) + β∥f − g∥ ∀x ∈ X (22)
Analogously, (Tg)(x) ≤ (Tf)(x) + β∥f − g∥ ∀x ∈ X (23)

Combining (22) and (23) yields

∥Tf − Tg∥ = sup
x∈X

|(Tf)(x)− (Tg)(x)| ≤ β∥f − g∥ (24)

T is thus a contraction mapping.
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Bellman Equation Bellman Equation and Contraction Mapping

V(x)

x

V∗ ≡ TV∗

Ṽ

TṼ

V′

TV′

Figure 2: T : B(X) → B(X) defined in the Bellman equation is a contraction mapping.
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Bellman Equation Bellman Equation and Contraction Mapping

Utilizing Contraction Mapping T

We have shown that T is a contraction mapping in space B(X).

So, T admits a unique fixed point, i.e., a unique V(·) such that
V ≡ TV.
Recall that, the unique solution to the Bellman equation, V, is
also the function V∗ in Problem A2.
Then, as long as the fixed point in B(X), function V, is found, we
have the value function, and can thus deduce the policy function.
Problem solved!
Question: How to find the fixed point V?
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Then, as long as the fixed point in B(X), function V, is found, we
have the value function, and can thus deduce the policy function.
Problem solved!
Question: How to find the fixed point V?
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Bellman Equation Bellman Equation and Contraction Mapping

Utilizing Contraction Mapping T (Continued)

Answer: Just like how function g is used iteratively in the
Newton’s method example, we can guess here any kind of bounded
function, denoted by V1 in B(X), and use T iteratively to generate
functions V2,V3,V4, · · · . The contraction mapping T will make
sure that the resulting sequence of function converges to the true
V (or say, V∗).

Complexity. Usually, it is impossible to track the iterative process
in a analytical way. We instead use numerical approximations.
The homework questions give you some basic ideas on how to
realize iterations in a functional space using numerical
approximations. Please do spend enough time on it!
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Bellman Equation Another Approach: Euler Equation

Another Approach: Euler Equation

Recall the Bellman equation:

V(x) = sup
y∈G(x)

{U(x, y) + βV(y)} for all x ∈ X. (25)

Question: If all the assumptions regarding the functions and sets
related to the optimization problem are taken, can we find out the
fixed point V in an analytical way?

First, let us denote by DxU the gradient with respect to the first K
arguments, and by DyU the gradient with respect to the last K
arguments. The gradient DV is naturally defined.
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Bellman Equation Another Approach: Euler Equation

Another Approach: Euler Equation (Continued)

Suppose for a given x, y∗(x) ∈ G(x) solves the problem, then we
must have:

DyU(x, y∗(x)) + βDV(y∗(x)) = 0. (26)

The Euler equations above should hold for all x ∈ X.
Also notice that V(x) = U (x, y∗(x)) + βV(y∗(x)) holds for all
x ∈ X. Differentiating both sides with respect to x and inserting
(26) into it yield (it could also be interpreted as an application of
the Envelope Theorem with an interior solution assumed):

DV(x) =DxU(x, y∗(x)) +
[
∂y∗(x)
∂x

]′
[DyU(x, y∗(x)) + βDV(y∗(x))]

=DxU(x, y∗(x)) (27)
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Bellman Equation Another Approach: Euler Equation

Another Approach: Euler Equation (Continued)

Recall y∗ maps X into X. Applying recursively Equation (27),
DV(x) = DxU(x, y∗(x)), yields:

DV(y∗(x)) = DxU (y∗(x), y∗(y∗(x))) (28)

Denote y∗(x) = π(x), after inserting Equation (28) into (26), the
Euler equations appears:

DyU(x, π(x)) + βDxU(π(x), π(π(x))) = 0, ∀x ∈ X. (29)
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Another Approach: Euler Equation (Continued)

When both x and y are variables (vectors with dimension 1), the Euler
equations are:

∂U(x(t), x∗(t + 1))

∂y + β
∂U(x∗(t + 1), x∗(t + 2))

∂x = 0 (30)

The Euler equations themselves are only necessary condtions for
the problem, combining with the transversality condition

lim
t→∞

βtDxU(x∗(t), x∗(t + 1)) · x∗(t) = 0

makes them both necessary and sufficient conditions.
If you are lucky enough, you can solve the problem using Euler
equations in a analytical and beautiful way, by correctly guessing
the form of the policy function.
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Bellman Equation Another Approach: Euler Equation

Example 6.4

Now do the following exercise:

max
{k(t),c(t)}∞t=0

∞∑
t=0

βt log c(t)

subject to k(t + 1) = k(t)α − c(t),
k(0) > 0, β ∈ (0, 1)

Method 1: Guess the policy function as π(x) = γxα, and verify
your guess by determining the value of γ. (economic intuition?)
Method 2: Guess the value function as V(x) = λ+ ξ log x, and
verify your guess by determining the values of λ and ξ.
You should find that the two methods above are equivalent.
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Bellman Equation Another Approach: Euler Equation

Guess and Verify

Question: If you have a guess that is successfully verified, can it be
an incorrect one?

Answer: usually not in economic applications, especially after
assumptions (i)− (iv) have been made. The tough question here is
how would you know the specific form of the policy function (value
function) without any clue, for any given utility function?
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Bellman Equation Miscellaneous Notes

Miscellaneous Notes

There are also tools for non-stationary dynamic programming
problems.

What if there are noises in the problem, e.g., noises in
state-evolution function f̃?
Answer: E(·) appears in the objective function.
What if the function f̃ is totally unknown?
Learn it from experience!
Reinforcement Learning. Everybody is talking about Artificial
Intelligence and Machine Learning!
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Bellman Equation Miscellaneous Notes

(a) AlphaGo by DeepMind (b) Goole Self-Driving Car

Figure 3: The A.I. mania relies intensively on dynamic programming tools.
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Calculus of variations (变分法)

Calculus of variations (变分法)

A field of mathematical analysis that deals with maximizing or
minimizing functionals, which are mappings from a set of
functions to the real numbers.
Functionals are often expressed as definite integrals involving
functions and their derivatives. (e.g., the famous shortest (in time)
path problem)
The Euler-Lagrange equation provides a necessary condition
for finding extrema.
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Calculus of variations (变分法) Euler-Lagrange equation

Euler-Lagrange equation

Intuition: Finding the extrema of functionals is similar to finding the
maxima and minima of functions. This tool provides a link between
them to solve the problem. Consider the functional

J[x] =
∫ t2

t1
L
(
t, x(t), x ′(t)

)
dt , (31)

where
t1, t2 are constants.
x(t) is twice continuously differentiable.
x ′(t) = dx

dt .
L (t, x(t), x′(t)) is twice continuously differentiable with respect to
all arguments.
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Calculus of variations (变分法) Euler-Lagrange equation

Euler-Lagrange equation (Continued)

If J [x] attains a local maximum at f, and η(t) is an arbitrary function
that has at least one derivative and vanishes at the endpoints t1 and t2,
then for any number ε → 0, we must have

J [f ] ≥ J [f + εη] . (32)

Term εη is called the variation of the function f. Now define

Φ(ε) = J[f + εη]. (33)

Since J [x] has a local maximum at x = f, it must be the case that Φ(ε)
has a maximum at ε = 0 and thus

Φ′(0) =
dΦ
dε

∣∣∣∣
ε=0

=

∫ t2

t1

dL
dε

∣∣∣∣
ε=0

dt = 0. (34)
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Calculus of variations (变分法) Euler-Lagrange equation

Euler-Lagrange equation (Continued)
Now taking total derivative of L [t, f + εη, (f + εη)′], we have:

dL
dε =

∂L
∂x η +

∂L
∂x ′ η

′. (35)

Inserting (35) into (34) gives us

0 =

∫ t2

t1

dL
dε

∣∣∣∣
ε=0

dt =

∫ t2

t1

(
∂L
∂f η +

∂L
∂f ′ η

′
)

dt

=

∫ t2

t1

(
∂L
∂f η − η

d( ∂L
∂f ′ )

dt

)
dt + ∂L

∂f ′ η
∣∣∣∣t2
t1

=

∫ t2

t1
η

(
∂L
∂f −

d( ∂L
∂f ′ )

dt

)
dt,

where the last two equalities use integration by parts and the fact that
η vanishes at t1 and t2.
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Calculus of variations (变分法) Euler-Lagrange equation

Euler-Lagrange equation (Continued)
Now given ∫ t2

t1
η

(
∂L
∂f −

d( ∂L
∂f ′ )

dt

)
dt = 0, (36)

the fundamental lemma of calculus of variations makes sure that

∂L
∂f −

d( ∂L
∂f ′ )

dt = 0 , ∀t ∈ (t1, t2) (37)

must hold!

However, it is possible to attain (37) based on (36) without
applying the lemma!
A special form of η?

How about η(t) equals −(t − t1)(t − t2)
[
∂L
∂f −

d( ∂L
∂f ′ )

dt

]
for t ∈ [t1, t2]

and 0 for t ̸∈ [t1, t2]?
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Calculus of variations (变分法) Euler-Lagrange equation

A simple exercise

Consider the following problem:

max[c(t),a(t)]1t=0

∫ 1
0 e−ρtu(c(t))dt, (38)

subject to ȧ(t) = ra(t) + ω − c(t), a(0) = a0, a(1) = 0. (39)

where r and ω are exogenously defined constants.
Deduce the Euler-Lagrange equation for the problem above.
Rearrange your result above to give the Euler equation usually
used in your textbooks, u′′(c(t))ċ(t)

u′(c(t)) = ρ− r, namely, along the
household’s optimal path, the growth rate of its marginal utility of
consumption should be equal to the gap between the discount rate
ρ and interest rate r.
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Calculus of variations (变分法) Euler-Lagrange equation

Another exercise: the Brachistochrone Curve

The famous Brachistochrone Problem: given two points (x0, y0) and
(x1, y1) with x0 < x1 and y0 > y1 in a two-dimensional world with
gravitational acceleration g and without frictions . Find a smooth path
that connects these points and makes the travel time from (x0, y0) to
(x1, y1) the shortest.
The problem above is transformed into a mathematical one:

min
y(x)

J(y) =
∫ x1

x0

√
1 + [y′(x)]2√

2g[y0 − y(x)]
dx (40)

subject to y(x0) = y0, y(x1) = y1. (41)

Check out
http://mathworld.wolfram.com/BrachistochroneProblem.html for
a detailed introduction to this problem!
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Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle

Mainly developed by Pontryagin and his group.
A Hamiltonian method that generalizes the Euler-Lagrange
equation above.
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments

Problem B1:

max
x(t),y(t),x1

W(x(t), y(t)) =
∫ t1

0
f(t, x(t), y(t)) dt , (42)

subject to ẋ(t) = g(t, x(t), y(t)) , (43)
x(0) = x0 . (44)

Other settings:
Continuous differentiability of functions are assumed again.
We ignore here the trivial requirements stating that the values of
x(t) and y(t) should always be in some sets X ,Y ∈ R for all t.
We suppose there exists an interior solution (x̂(t), ŷ(t)), and focus
on the necessary conditions for a solution.
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)

Take a variation of function ŷ(t):

y(t, ϵ) = ŷ(t) + ϵ η(t). (45)

Note that given y(t, ϵ), x(t) is now dependent on ϵ according to
evolutionary equation (43), so the resulting x(t, ϵ) is defined by:

ẋ(t, ϵ) = g(t, x(t, ϵ), y(t, ϵ)) for all t ∈ [0, t1], with x(0, ϵ) = x0. (46)

Define:

W(ϵ) = W(x(t, ϵ), y(t, ϵ))

=

∫ t1

0
f(t, x(t, ϵ), y(t, ϵ)) dt. (47)
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)

Since x̂(t), ŷ(t) solve the optimal control problem, we must have:

W(ϵ) ≤ W(0) for all small engough ϵ → 0. (48)

Now recall that, g(t, x(t, ϵ), y(t, ϵ))− ẋ(t, ϵ) = 0 holds for all t. Then for
any function λ : [0, t1] → R, we must have:∫ t1

0
λ(t)[g(t, x(t, ϵ), y(t, ϵ))− ẋ(t, ϵ)] dt = 0. (49)

Function λ(t) is called the costate variable, with an interpretation
similar to the Lagrange multipliers in standard (static) optimization
problems.
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)

Combining (47) and (49) lets us redefine W(ϵ):

W(ϵ) =

∫ t1

0

f(t, x(t, ϵ), y(t, ϵ)) dt + 0

=

∫ t1

0

{f(t, x(t, ϵ), y(t, ϵ))+λ(t)[g(t, x(t, ϵ), y(t, ϵ))−ẋ(t, ϵ)]}dt

=

∫ t1

0

{f(t, x(t, ϵ), y(t, ϵ))+λ(t)g(t, x(t, ϵ), y(t, ϵ))+λ̇(t)x(t, ϵ)}dt

−λ(t1)x(t1, ϵ) + λ(0)x0. (50)

The last equality above uses integration by parts.
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)

Applying Leibniz’s Rule to (50) yields:

W ′(ϵ) =

∫ t1

0

[
fx(t, x(t, ϵ), y(t, ϵ))+λ(t)gx(t, x(t, ϵ), y(t, ϵ))+λ̇(t)

]
xϵ(t, ϵ)dt

+

∫ t1

0

[fy(t, x(t, ϵ), y(t, ϵ)) + λ(t)gy(t, x(t, ϵ), y(t, ϵ))] η(t)dt

−λ(t1)xϵ(t1, ϵ) (51)

Recall that condition (48) can be rewritten as W ′(0) = 0. We thus
have:

0 =

∫ t1

0

[
fx(t, x̂(t), ŷ(t))+λ(t)gx(t, x̂(t), ŷ(t))+λ̇(t)

]
xϵ(t, 0)dt

+

∫ t1

0

[fy(t, x̂(t), ŷ(t)) + λ(t)gy(t, x̂(t), ŷ(t))] η(t)dt

−λ(t1)xϵ(t1, 0) (52)
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)
Treating λ(t1)xϵ(t1, 0)

(52) must hold for any continuously differentiable λ(t).
we simply focus on a class of costate variables satisfying

λ(t1) = 0 (53)

As a result, λ(t1)xϵ(t1, 0) = 0.
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)
Treating

∫ t1
0

[
fx(t, x̂(t), ŷ(t))+λ(t)gx(t, x̂(t), ŷ(t))+λ̇(t)

]
xϵ(t, 0)dt

Besides λ(t1) = 0 as illustrated above, can we add more
requirements on the costate variable?
Again, since (52) must hold for any continuously differentiable
λ(t), why not focus on the following λ(t):

λ̇(t) = − [fx(t, x̂(t), ŷ(t))+λ(t)gx(t, x̂(t), ŷ(t))] , (54)
λ(t1) = 0
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)
Treating

∫ t1
0

[fy(t, x̂(t), ŷ(t)) + λ(t)gy(t, x̂(t), ŷ(t))] η(t)dt

Given the costate λ(t) defined above, equality∫ t1
0 [fy(t, x̂(t), ŷ(t)) + λ(t)gy(t, x̂(t), ŷ(t))] η(t)dt = 0 must hold for

arbitrary η(t).
Applying the fundamental lemma of calculus of variations yields:

fy(t, x̂(t), ŷ(t)) + λ(t)gy(t, x̂(t), ŷ(t)) = 0 for all t ∈ [0, t1] (55)
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Pontryagin’s Maximum Principle Variational Arguments

Variational Arguments (Continued)

Theorem 3
Suppose Problem B1 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable costate λ(t) defined on
[0, t1], such that (43), (53), (54), and (55) hold.
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Pontryagin’s Maximum Principle Variational Arguments

Problem B2

max
x(t),y(t)

W(x(t), y(t)) =
∫ t1

0
f(t, x(t), y(t)) dt ,

subject to ẋ(t) = g(t, x(t), y(t)), (56)
x(0) = x0, and x(t1) = x1.

Theorem 4
Suppose Problem B2 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable costate λ(t) defined on
[0, t1], such that (56), (54), and (55) hold.

Can you figure out how and why Theorem 4 differs from Theorem 3?

Ming Yi (Econ@HUST) Doctoral Macroeconomics Notes on D.P. & O.C. 51 / 61



Pontryagin’s Maximum Principle Variational Arguments

Revisiting the simple exercise

Consider the following problem:

max[c(t),a(t)]1t=0

∫ 1
0 e−ρtu(c(t))dt, (57)

subject to ȧ(t) = ra(t) + ω − c(t), a(0) = a0, a(1) = 0. (58)

where r and ω are exogenously defined constants.
Use the Pontryagin’s Maximum Principle (Theorem 4 above) to
get the same results (Euler equation) as before.
Given u(c) = log(c), can you solve the problem above? What if
u(c) =

[
θ − e−βc(t)]?
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Pontryagin’s Maximum Principle Variational Arguments

Problem B3

max
x(t),y(t)

W(x(t), y(t)) =
∫ t1

0
f(t, x(t), y(t)) dt ,

subject to ẋ(t) = g(t, x(t), y(t)), (59)
x(0) = x0, and x(t1) ≥ x1.

Theorem 5
Suppose Problem B3 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable costate λ(t) defined on
[0, t1], such that (59), (54), (55), and λ(t1)[x(t1)− x1] = 0 hold.

Can you figure out how and why Theorem 5 differs from Theorem 3?
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Pontryagin’s Maximum Principle Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle
Revisit Problem B1. Define the Hamiltonian:

H(t, x(t), y(t), λ(t)) ≡ f(t, x(t), y(t)) + λ(t)g(t, x(t), y(t)). (60)

Theorem 6
Suppose Problem B1 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable function λ(t) such that
the following necessary conditions hold:

λ̇(t) = −Hx(t, x̂(t), ŷ(t), λ(t)) for all t ∈ [0, t1], (61)
ẋ(t) = Hλ(t, x̂(t), ŷ(t), λ(t)) for all t ∈ [0, t1], (62)

H(t, x̂(t), ŷ(t), λ(t)) ≥ H(t, x̂(t), y, λ(t)) for all feasible y, t, (63)
x(0) = x0, λ(t1) = 0. (64)

Question: relationship between (55) and (63)?
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Pontryagin’s Maximum Principle Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle (Continued)

The results of equations (61)-(64) are straightforward to
understand given the variational arguments illustrated earlier.
Can you figure out the Pontryagin’s Maximum Principle for
Problems B2 and B3?
(important) In all problems so far, we have both x and y
one-dimensional variables. The Pontryagin’s maximum Principle
also applies to scenarios where x and y are actually vectors of state
and control variables, respectively. In these cases, it may be
necessary to introduce more than one costate variables, e.g.,
λ1(t), · · · , λk(t) into the Hamiltonian. For instance, if the
evolutionary equation becomes ẋ = g1(·) and d2x

dt2 = g2(·). We
actually have two state variables here: x = (x, ẋ).
So far only necessary conditions discussed. Sufficient conditions?
It suffices to have some degree of concavity of H(t, x, y, λ) in (x, y).
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Pontryagin’s Maximum Principle Infinite Horizon

Infinite Horizon Problem

Consider Problem B4:

max
x(t),y(t)

W(x(t), y(t)) =
∫ ∞

0
f(t, x(t), y(t)) dt , (65)

subject to ẋ(t) = g(t, x(t), y(t)), (66)
x(0) = x0, and lim

t→∞
b(t)x(t) ≥ x1.

Notice: When the integral is defined on an unbounded interval, we
need more assumptions (related to the dominated convergence
theorem) on the integrability of some functions for the Leibniz’s Rule
to apply. However, these details are trivial and almost always satisfied
in economic applications.
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Pontryagin’s Maximum Principle Infinite Horizon

Infinite Horizon Problem (continued)

Theorem 7
Suppose Problem B4 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable function λ(t) such that
the following necessary conditions hold:

λ̇(t) = −Hx(t, x̂(t), ŷ(t), λ(t)) for all t ∈ R+, (67)
ẋ(t) = Hλ(t, x̂(t), ŷ(t), λ(t)) for all t ∈ R+, (68)

H(t, x̂(t), ŷ(t), λ(t)) ≥ H(t, x̂(t), y, λ(t)) for all feasible y, t, (69)
x(0) = x0, lim

t→∞
b(t)x(t) ≥ x1. (70)
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Pontryagin’s Maximum Principle Current-Value Hamiltonian

Current-Value Hamiltonian

Consider Problem B5:

max
x(t),y(t)

W(x(t), y(t)) =
∫ ∞

0
e−ρtf(x(t), y(t)) dt , (71)

subject to ẋ(t) = g(t, x(t), y(t)), (72)
x(0) = x0, and lim

t→∞
b(t)x(t) ≥ x1.

The Hamiltonian is:

H(t, x(t), y(t), λ(t)) = e−ρt [f(x(t), y(t)) + eρtλ(t)g(t, x(t), y(t))
]

(73)

Define function µ(t) ≡ eρtλ(t). The current-value Hamiltonian is
thus defined as

Ĥ(t, x(t), y(t), µ(t)) ≡ f(x(t), y(t)) + µ(t)g(t, x(t), y(t)). (74)
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Pontryagin’s Maximum Principle Current-Value Hamiltonian

Current-Value Hamiltonian(continued)

Theorem 8
Suppose Problem B5 has an interior continuous solution (x̂(t), ŷ(t)),
then there exists a continuously differentiable function µ(t) such that
the following conditions hold:

Ĥy(t, x̂(t), ŷ(t), µ(t)) = 0 for all t ∈ R+, (75)
ρµ(t)− µ̇(t) = Ĥx(t, x̂(t), ŷ(t), µ(t)) for all t ∈ R+, (76)

ẋ(t) = Ĥµ(t, x̂(t), ŷ(t), µ(t)) for all t ∈ R+, (77)
lim

t→∞
[e−ρtµ(t)x̂(t)] = 0 (78)

x(0) = x0, lim
t→∞

b(t)x̂(t) ≥ x1. (79)

(78) is a simplified version of the Transversality Condition for
optimization problems with an infinite horizon.
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Pontryagin’s Maximum Principle Homework

Homework

Try your best to understand:
Example 7.1 (page 233), Example 7.3 (page 252), and Section 7.8:
The q-theory (page 269) in Acemoglu (2008).
Or examples between pages 641-643, and Section 20.5 (page 649)
in Chiang and Wainwright (2005). Note that the notations used in
these books are different.
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