Energy Saving Technological Change in U.S. Manufacturing
(Preliminary)

Tiefeng Qian

SITE@CUFE

October 12, 2017
Part I

Introduction
Figure 1: Distribution of Energy Cost Share Growth Rate
Research Question:

1. Given the significant heterogeneity across industries, how biased is the estimate of ESTC for the U.S. manufacturing?
2. How does heterogeneity evolve over time?
3. In what way(s), does heterogeneity affect the reduction of energy intensity? Which component makes greater contribution?
1. Estimation of aggregate CES production nesting energy, Polgreen and Silos [2009], following Krusell et al [2000]. Identifying BTC from elasticity (Diamond et.al [1978],).

2. Debate on technical change versus structural change (Composition Effect), Trade, Preference, Regulation. Levinson [2009, 2015], Stefani [2013], Shaprio and Walker [Forthcoming].

3. Relationship between heterogeneity (within between industry) and the aggregate technology (Oberfield and Raval [2014])
Part II

Model
Production

1. Inner level of the production

\[g_i(K_i, E_i) = A_{i,t}^k \left[(1 - \delta_i) \cdot (K_{it})^{\rho_e} + \delta_{it} \cdot (\varphi_{Eit}E_{it})^{\rho_e} \right]^{\frac{1}{\rho_e}} \]

2. Middle level

\[f_i^g(K_{it}, E_{it}, L_{it}) = A_{i,t}^v \left[(1 - \mu_i) \cdot (g_i(K_{it}, E_{it}))^{\rho_l} + \mu \cdot (\varphi_{Lit}L_{it})^{\rho_l} \right]^{\frac{1}{\rho_l}} \]

3. Outer level

\[Y_{it}^g = A_{i,t}^s \left[(1 - \lambda_i) \cdot (f_i^g(K_t, L_t, E_t))^{\rho_m} + \lambda_i \cdot (\varphi_{imt}M_{it})^{\rho_m} \right]^{\frac{1}{\rho_m}} \]
Demand I

Demand structure features nested ACES utility function.

1. At the top level

$$Q_t = \left(\sum_{g=1}^{I} \omega_g \cdot Q_{gt}^\beta \right)^{\frac{1}{\beta}}$$

(1)

where $1/(1 - \beta)$ is the elasticity of substitution between industries, and quantity of industry g, Q_{gt} can be further specified:

2. At the bottom level

$$Q_{gt} = \left(\sum_{i=1}^{I} \exp \left[\lambda_{ig}(E_t) \cdot q_{igt} \right] \right)^{\frac{1}{\alpha_g}}$$

3. The representative consumer maximize the utility U_t subject to the constraint:

$$\sum_{g} \sum_{i} q_{igt} \cdot p_{igt} = E_{mt}$$
Demand II

4. Based on the CES aggregation structure, we can define the price index in industry g as

$$P_{gt} = \left(\sum_{i=1}^{I} \exp[\lambda_{ig}(E_t)] \frac{1}{1-a_g} \left(p_{igt} \right)^{\frac{a_g}{a_g-1}} \right)^{\frac{a_g-1}{a_g}}.$$

and the price index for the whole manufacturing sector as:

$$P_t = \left(\sum_{g} \omega_g \left(\frac{P_{gt}}{\omega_g} \right)^{\frac{\beta}{\beta-1}} \right)^{\frac{\beta-1}{\beta}}.$$

5. Demand for product group g,

$$Q_{gt} = Q_t \omega_g^{\frac{1}{1-\beta}} \left(\frac{P_t}{P_{gt}} \right)^{\frac{1}{1-\beta}}$$

and of q_{igt} for industry i in group g,

$$q_{igt} = Q_{gt} \exp[\lambda_{ig}(E_t)] \frac{1}{1-a_g} \left(\frac{P_{gt}}{P_{igt}} \right)^{\frac{1}{1-a_g}}.$$
Demand III

6. The share of expenditure on q_{igt} out of that on group g can be calculated:

$$
\chi_{igt} = \frac{p_{igt} \cdot q_{igt}}{P_{gt} \cdot Q_{gt}} = \exp[\lambda_{ig}(E_t)] \frac{1}{1-\alpha_g} \left(\frac{P_{gt}}{p_{igt}} \right)^{\frac{\alpha_g}{1-\alpha_g}}
$$

and the expenditure share of group g out of the entire manufacturing sector is:

$$
\chi_{gt} = \frac{P_{gt} \cdot Q_{gt}}{P_t \cdot Q_t} = \omega_g \frac{1}{1-\beta} \left(\frac{P_t}{P_{gt}} \right)^{\frac{\beta}{1-\beta}}.
$$

7. Loglinearizing the first equation gives:

$$
\log \chi_{igt} = \frac{1}{1-\alpha_g} \lambda_{ig}(E_t) + \frac{\alpha_g}{1-\alpha_g} \log(P_{gt}/P_{igt}),
$$

which separate the income effect and price effect and can be easily estimated by OLS. The same method can be applied to χ_{gt}.
Part III

Aggregation
Aggregating $\psi_{E,i}$

1. Consider a scenario with no changes in the relative price, i.e. $\Delta \log(p_E/r) = 0$, and see how factor cost share (factor use) responds to the changes in the ψ_e,

$$\psi_e = \Delta \log \left(\frac{E}{K} \right) = \Delta \log \frac{s_E}{1 - s_E}$$

and for each industry i,

$$\psi_{e,i} = \Delta \log \left(\frac{E_i}{K_i} \right) = \Delta \log \frac{s_{E,i}}{1 - s_{E,i}}$$

2. With $s_E = \sum_i \theta_i s_{E,i}$, we have:

$$\psi_e = \sum_i \frac{(1 - s_{E,i})s_{E,i}}{(1 - s_E)s_E} \theta_i \psi_{e,i} + \sum_i \frac{s_{E,i} - s_E}{(1 - s_E)s_E} d\theta_i.$$

Define

$$\bar{\psi}_e = \sum_i \frac{(1 - s_{E,i}) \times s_{E,i} \times \theta_i}{\sum_j (1 - s_{E,j}) \times s_{E,j} \times \theta_j} \psi_{e,i}.$$
Aggregating $\psi_{E,i}$ II

and

$$\Xi \equiv \sum_i \frac{(s_{E,i} - s_E)^2}{s_E \times (1 - s_E)} \theta_i$$

we have

$$\psi_e = (1 - \Xi) \cdot \overline{\psi}_e + \sum_i \frac{s_{E,i} - s_E}{(1 - s_E) \times s_E} \frac{d\theta_i}{dt}$$

3. How the composition θ_i respond to technology changes $\psi_{e,i}$ over time. For simplicity, assume capital and energy are the only two inputs in each industry, resulting in that $\theta_{i,t} = \chi_{i,t}$.

$$\psi_e = (1 - \Xi) \cdot \overline{\psi}_e + \sum_i \frac{s_{E,i} - s_E}{(1 - s_E) \times s_E} \frac{1}{1 - \beta} \Delta \lambda_i(E_t) + \sum_i \frac{s_{E,i} - s_E}{(1 - s_E) \times s_E} \frac{\beta}{1 - \beta} \Delta \log(P_t/P_{it})$$

Income Effect

Price Effect
Aggregate Elasticity σ^{ke}

Analogously, we can define σ^{ke} for the entire manufacturing sector relying the equation

$$
\Delta \log \left(\frac{s_E}{s_K} \right) = (1 - \sigma^{ke}_a) \Delta \log \left(\frac{r}{p_E} \right) + \psi_e.
$$

To define the aggregate elasticity, we look at the response of cost ratio to relative price changes absent (aggregate) biased technical change.

1. we define σ_{agg} through the equation:

$$
\Delta \log \left(\frac{s_E}{s_K} \right) = (1 - \sigma^{ke}_i) \Delta \log \left(\frac{r}{p_E} \right)
$$

Analogously for each industry by keeping industrial energy saving technology $\phi_{e,i} = 0$:

$$
\Delta \log \left(\frac{s_{E,i}}{s_{K,i}} \right) = (1 - \sigma_i) \Delta \log \left(\frac{r}{p_E} \right).
$$
Aggregate Elasticity σ^{ke} II

2. we then have

$$\sigma_a^{ke} = (1 - \Xi) \bar{\sigma}^{ke} + \frac{\sum_i (s_{E,i} - s_E) \frac{\partial \theta_i}{\partial \log(r/p_E)}}{s_E(1 - s_E)} + \Xi$$

with

$$\bar{\sigma}^{ke} \equiv \sum_i \frac{s_{E,i} \times (1 - s_{E,i}) \times \theta_i}{\sum_j s_{E,j} \times (1 - s_{E,j}) \times \theta_j} \sigma_i^{ke}$$

$\bar{\sigma}^{ke}$ is a weighted average of σ_i^{ke}, while Ξ stands for a heterogeneity index, the result is similar to Oberfield and Ravel [2014].

3. A special case

$$\sigma_a^{ke} \approx (1 - \Xi) \bar{\sigma}^{ke} + \Xi$$

hence $\sigma_a^{ke} \geq \Xi$, $\sigma_a^{ke} \geq \bar{\sigma}^{ke}$, and $\sigma_a^{ke} \leq \Xi + \bar{\sigma}^{ke}$
Part IV

Empirical Strategy
To estimate long-run elasticities, annual data is not perfect. 5-year-window-average of growth rate is employed, which is similar to the spirit of Chirinko and Mallick [2017], favoring low-frequency variation.

Low-frequency data reduce the effect of short-run shocks, frictions (e.g. adjustment cost).

NBER-CES U.S. Manufacturing data set is employed, covering 400+ industries, from 1958 through 2011.
Estimating σ^{ke} and ψ_e

1. Equalizing marginal product of inputs to its prices gives:

$$\Delta \log \left(\frac{s_K}{s_E} \right)_{it} = (1 - \sigma^{ke}) \phi_{e \sim k,i} + (1 - \sigma^{ke}) \Delta \log \left(\frac{r}{p_e} \right)_{it} + \epsilon_{it}$$

where $\sigma^{ke} = 1/(1 - \rho_E)$ is the long-run ES between capital and energy and $\psi_{s \sim k,i}$ is the ESTC in i.

2. And

$$\Delta \log \left(\frac{s_K}{s_L} \right)_{it} = (1 - \sigma^{kl}) \phi_{l \sim k,i} + (1 - \sigma^{kl}) \Delta \log \left(\frac{r}{w} \right)_{it} + \frac{\sigma^{kl} - \sigma^{ke}}{\sigma^{ke} - 1} \Delta \log \left(1 + \frac{s_E}{s_K} \right)_{it} + \epsilon_{it}$$

where $\sigma^{kl} = 1/(1 - \rho_l)$ is the long-run ES between capital and labor, $\psi_{l \sim k,i}$ is the LBTC.
3. Taking the first difference of log expenditure gives us estimating equation

\[
\Delta \log \chi_{igt} = \frac{1}{1 - \alpha_g} \Delta \lambda_{ig}(E_t) + \frac{\alpha_g}{1 - \alpha_g} \Delta \log \left(\frac{P_{gt}}{P_{igt}} \right) + \nu_{igt}
\]

Income effect is estimated as the fixed effect, price effect is identified by the variation in relative price changes across industries over time.
Part V

Empirical Results
Results

Figure 2: Variations in Relative Price and Expenditure Growth
Figure 3: Variations in Capital-Energy Relative Price and Relative Quantity.
Table 1: Capital-Energy Elasticity of Substitution

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \tau \log \left(\frac{s_K}{s_E} \right)_{it})</th>
<th>(\Delta \tau \log (P_K/P_E)_{it})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Delta \tau \log \left(\frac{s_K}{s_E} \right)_{it})</td>
<td>(\Delta \tau \log (P_K/P_E)_{it})</td>
</tr>
<tr>
<td>Industry</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>(\tau)</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>Obs</td>
<td>4971</td>
<td>4971</td>
</tr>
</tbody>
</table>

Estimates of \(\sigma^{ke} \)
Estimates of σ^{ke} II

Table 2: Capital-Energy Elasticity of Substitution (78-83 onward)

<table>
<thead>
<tr>
<th>Dependent Variable: $\Delta_{\tau} \log \left(\frac{s_K}{s_E} \right)_{it}$</th>
<th>$\Delta_{\tau} \log (P_K / P_E)_{it}$</th>
<th>0.9580</th>
<th>1.0429</th>
<th>0.3011</th>
<th>0.4847</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Error: (0.0516)</td>
<td>(0.0516)</td>
<td>(0.0557)</td>
<td>(0.0927)</td>
<td>(0.1096)</td>
</tr>
<tr>
<td>Industry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs</td>
<td>3191</td>
<td>3191</td>
<td>3191</td>
<td>3191</td>
<td></td>
</tr>
</tbody>
</table>
Estimates of $\psi_{e,i}$

Figure 4: Distribution of ψ_{ei} before and after the crises.
Estimates of σ^{kl}

Table 3: Capital-Labor Elasticity of Substitution

<table>
<thead>
<tr>
<th>Dependent Variable: $\Delta_{\tau} \log \left(\frac{s_K}{s_L} \right)_{it}$</th>
<th>0.3156</th>
<th>0.3908</th>
<th>0.2357</th>
<th>0.3539</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_{\tau} \log (P_K/P_L)_{it}$</td>
<td>0.0376</td>
<td>0.0408</td>
<td>0.0466</td>
<td>0.0527</td>
</tr>
<tr>
<td>$\Delta_{\tau} \log [1 + (s_E/s_K)]_{it}$</td>
<td>-1.3301</td>
<td>-1.3200</td>
<td>-1.2830</td>
<td>-1.2609</td>
</tr>
<tr>
<td>$\Delta_{\tau} \log [1 + (s_E/s_K)]_{it}$</td>
<td>0.0397</td>
<td>0.0408</td>
<td>0.0402</td>
<td>0.0414</td>
</tr>
<tr>
<td>Industry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>τ</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Obs</td>
<td>4971</td>
<td>4971</td>
<td>4971</td>
<td>4971</td>
</tr>
</tbody>
</table>
Estimates of σ_β and λ_i.

Table 4: Elasticity of Substitution Between Industries

<table>
<thead>
<tr>
<th></th>
<th>Dependent Variable: $\Delta_{\tau}log\chi_{it}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_{\tau}log(P_{it}/P_t)$</td>
<td>0.4200</td>
</tr>
<tr>
<td></td>
<td>(0.0291)</td>
</tr>
<tr>
<td>Industry</td>
<td>✓</td>
</tr>
<tr>
<td>τ</td>
<td>✓</td>
</tr>
<tr>
<td>Obs</td>
<td>4971</td>
</tr>
</tbody>
</table>
Estimates of σ_β and λ_i II

Table 5: Elasticity of Substitution Between Industries

<table>
<thead>
<tr>
<th>Dependent Variable: $\Delta \tau \log \chi_{it}$</th>
<th>$\Delta \tau \log (P_{it}/P_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4200</td>
</tr>
<tr>
<td></td>
<td>(0.0291)</td>
</tr>
<tr>
<td>Industry</td>
<td>✓</td>
</tr>
<tr>
<td>$\lambda_i \times \text{Industry}$</td>
<td>✓</td>
</tr>
<tr>
<td>τ</td>
<td>✓</td>
</tr>
<tr>
<td>Obs</td>
<td>4971</td>
</tr>
</tbody>
</table>

	0.4860
	(0.0344)
$\lambda_i \times \text{Industry}$	✓
Obs	4971

	0.4011
	(0.0296)
τ	✓
Obs	4971

	0.5170
	(0.0354)
Obs	4971
Part VI

Quantitative Assessment
Figure 5: Heterogeneity Index: Blue solid capital-energy for θ_i; Red dashed for gross θ_i.
Figure 6: Heterogeneity Index: Blue solid for capital-energy θ_i; Red dashed for gross θ_i.

ψ_e
Price Effect vs. Income Effect

Figure 7: Expenditure: Income Effect versus Price Effect
Conclusion