Energy Saving Technological Change in U.S. Manufacturing (Preliminary)

Tiefeng Qian

SITE@CUFE

October 12, 2017

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Part I

Introduction

Facts

Figure 1: Distribution of Energy Cost Share Growth Rate

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○

Research Question:

- 1. Given the significant heterogeneity across industries, how biased is the estimate of ESTC for the U.S. manufacturing?
- 2. How does heterogeneity evolve over time?
- 3. In what way(s), does heterogeneity affect the reduction of energy intensity? Which component makes greater contribution?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

- Estimation of aggregate CES production nesting energy, Polgreen and Silos [2009], following Krusell et al [2000]. Identifying BTC from elasticity (Diamond et.al [1978],).
- 2. Debate on technical change versus structural change (Composition Effect), Trade, Preference, Regulation. Levinson [2009, 2015], Stefani [2013], Shaprio and Walker [Forthcoming].
- 3. Relationship between heterogeneity (within between industry) and the aggregate technology (Oberfield and Raval [2014])

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Part II

Model

Production

1. Inner level of the production

$$g_i(K_i, E_i) = A_{i,t}^k \left[(1 - \delta_i) \cdot (K_{it})^{\rho_E} + \delta_{it} \cdot (\varphi_{Eit} E_{it})^{\rho_E} \right]^{\frac{1}{\rho_E}}$$

2. Middle level

$$f_{i}^{g}(K_{it}, E_{it}, L_{it}) = A_{i,t}^{v} \left[(1 - \mu_{i}) \left(g_{i}(K_{it}, E_{it}) \right)^{\rho_{l}} + \mu \cdot (\varphi_{Lit}L_{it})^{\rho_{l}} \right]^{\frac{1}{\rho_{l}}}$$

3. Outter level

$$Y_{it}^{g} = A_{i,t}^{g} \left[(1 - \lambda_i) \left(f_i^{g}(K_t, L_t, E_t) \right)^{\rho_m} + \lambda_i \cdot (\varphi_{imt} M_{it})^{\rho_m} \right]^{\frac{1}{\rho_m}}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Demand I

Demand structure features nested ACES utility function.

1. At the top level

$$Q_t = \left(\sum_{g=1}^J \omega_g \cdot Q_{gt}^\beta\right)^{\frac{1}{\beta}} \tag{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

where $1/(1-\beta)$ is the elasticity of substitution between industries, and quantity of industry g, Q_{gt} can be further specified:

2. At the bottom level

$$Q_{gt} = \left(\sum_{i=1}^{I} \left(\exp\left[\lambda_{ig}(E_t)\right] \cdot q_{igt}\right)^{\alpha_g}\right)^{\frac{1}{\alpha_g}}$$

3. The representative consumer maximize the utility U_t subject to the constraint:

$$\sum_{g}\sum_{i}q_{igt}\cdot p_{igt} = E_{mt}$$

Demand II

4. Based on the CES aggregation structure, we can define the price index in industry g as

$$P_{gt} = \left(\sum_{i=1}^{I} \exp[\lambda_{ig}(E_t)]^{\frac{1}{1-\alpha_g}} \left(p_{igt}\right)^{\frac{\alpha_g}{\alpha_g-1}}\right)^{\frac{\alpha_g}{\alpha_g}}$$

.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

and the price index for the whole manufacturing sector as:

$$P_t = \left(\sum_{g} \omega_g \left(\frac{P_{gt}}{\omega_g}\right)^{\frac{\beta}{\beta-1}}\right)^{\frac{\beta-1}{\beta}}$$

5. Demand for product group g,

$$Q_{gt} = Q_t \omega_g^{\frac{1}{1-\beta}} \left(\frac{P_t}{P_{gt}}\right)^{\frac{1}{1-\beta}}$$

and of q_{igt} for industry *i* in group *g*,

$$q_{igt} = Q_{gt} \exp[\lambda_{ig}(E_t)]^{\frac{1}{1-\alpha_g}} \left(\frac{P_{gt}}{P_{igt}}\right)^{\frac{1}{1-\alpha_g}}$$

Demand III

6. The share of expenditure on q_{igt} out of that on group g can be calculated:

$$\chi_{igt} = \frac{p_{igt} \cdot q_{igt}}{P_{gt} \cdot Q_{gt}} = \exp[\lambda_{ig}(E_t)]^{\frac{1}{1-\alpha_g}} \left(\frac{P_{gt}}{p_{igt}}\right)^{\frac{\alpha_g}{1-\alpha_g}}$$

and the expenditure share of group g out of the entire manufacturing sector is:

$$\chi_{gt} = \frac{P_{gt} \cdot Q_{gt}}{P_t \cdot Q_t} = \omega_g^{\frac{1}{1-\beta}} \left(\frac{P_t}{P_{gt}}\right)^{\frac{\beta}{1-\beta}}.$$

7. Loglinearizing the first equation gives:

$$\log \chi_{igt} = \underbrace{\frac{1}{1 - \alpha_g} \lambda_{ig}(E_t)}_{\text{Income Effect}} + \underbrace{\frac{\alpha_g}{1 - \alpha_g} \log(P_{gt} / P_{igt})}_{\text{Price Effect}},$$

which separate the income effect and price effect and can be easily estimated by OLS. The same method cam be applied to χ_{gt} .

(日)、(型)、(E)、(E)、(E)、(O)へ(C)

Part III

Aggregation

Aggregating $\psi_{E,i}$ l

1. Consider a scenario with no changes in the relative price, i.e. $\Delta \log(p_E/r) = 0$, and see how factor cost share (factor use) responds to the changes in the ψ_e ,

$$\psi_e = \Delta \log\left(\frac{E}{K}\right) = \Delta \log \frac{s_E}{1 - s_E}$$

and for each industry i,

$$\psi_{e,i} = \Delta \log \left(\frac{E_i}{K_i}\right) = \Delta \log \frac{s_{E,i}}{1 - s_{E,i}}$$

2. With $s_E = \sum_i \theta_i s_{E,i}$, we have:

$$\psi_{e} = \sum_{i} \frac{(1 - s_{E,i})s_{E,i}}{(1 - s_{E})s_{E}} \theta_{i} \psi_{e,i} + \sum_{i} \frac{s_{E,i} - s_{E}}{(1 - s_{E})s_{E}} \frac{d\theta_{i}}{dt}.$$

Define

$$\overline{\psi}_{e} = \sum_{i} \frac{(1 - s_{E,i}) \times s_{E,i} \times \theta_{i}}{\sum_{j} (1 - s_{E,j}) \times s_{E,j} \times \theta_{j}} \psi_{e,i},$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Aggregating $\psi_{E,i}$ II

and

$$\Xi \equiv \sum_{i} rac{(s_{E,i} - s_E)^2}{s_E imes (1 - s_E)} heta_i$$

we have

$$\psi_e = (1-\Xi) \cdot \overline{\psi}_e + \sum_i rac{s_{E,i} - s_E}{(1-s_E) imes s_E} rac{d heta_i}{dt},$$

3. How the composition θ_i respond to technology changes $\psi_{e,i}$ over time. For simplicity, assume capital and energy are the only two inputs in each industry, resulting in that $\theta_{i,t} = \chi_{i,t}$.

$$\psi_{e} = (1 - \Xi) \cdot \overline{\psi}_{e} + \underbrace{\sum_{i} \frac{s_{E,i} - s_{E}}{(1 - s_{E}) \times s_{E}} \frac{1}{1 - \beta} \Delta \lambda_{i}(E_{t})}_{\text{Income Effect}} + \underbrace{\sum_{i} \frac{s_{E,i} - s_{E}}{(1 - s_{E}) \times s_{E}} \frac{\beta}{1 - \beta} \Delta \log(P_{t} / P_{it})}_{\text{Price Effect}}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Aggregate Elasticity σ^{ke} I

Analogously, we can define σ^{ke} for the entire manufacturing sector relying the equation

$$\Delta \log \left(\frac{s_E}{s_K}\right) = (1 - \sigma_a^{ke}) \Delta \log \left(\frac{r}{p_E}\right) + \psi_e$$

To define the aggregate elasticity, we look at the response of cost ratio to relative price changes absent (aggregate) biased technical change.

1. we define σ_{agg} through the equation:

$$\Delta \log\left(rac{s_E}{s_K}
ight) = (1 - \sigma_i^{ke})\Delta \log\left(rac{r}{p_E}
ight)$$

Analogously for each industry by keeping industrial energy saving technology $\phi_{e,i} = 0$:

$$\Delta \log\left(\frac{s_{E,i}}{s_{K,i}}\right) = (1 - \sigma_i)\Delta \log\left(\frac{r}{p_E}\right).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Aggregate Elasticity σ^{ke} II

2. we then have

$$\sigma_a^{ke} = (1 - \Xi)\bar{\sigma}^{ke} + \frac{\sum_i (s_{E,i} - s_E) \frac{\partial \theta_i}{\partial \log(r/p_E)}}{s_E(1 - s_E)} + \Xi$$

with

$$ar{\sigma}^{ke} \equiv \sum_{i} rac{s_{E,i} imes (1 - s_{E,i}) imes heta_{i}}{\sum_{j} s_{E,j} imes (1 - s_{E,j}) imes heta_{j}} \sigma_{i}^{ke}$$

 $\bar{\sigma}^{ke}$ is a weighted average of σ_i^{ke} , while Ξ stands for a heterogeneity index, the result is similar to Oberfield and Ravel [2014].

3. A special case

$$\sigma_a^{ke} \approx (1 - \Xi)\bar{\sigma}^{ke} + \Xi$$

hence $\sigma_a^{ke} \geq \Xi$, $\sigma_a^{ke} \geq \bar{\sigma}^{ke}$, and $\sigma_a^{ke} \leq \Xi + \bar{\sigma}^{ke}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Part IV

Empirical Strategy

- To estimate long-run elasticities, annual data is not perfect. 5-year-window-average of growth rate is employed, which is similar to the spirit of Chirinko and Mallick [2017], favoring low-frequency variation.
- ▶ Low-frequency data reduce the effect of short-run shocks, frictions (e.g. adjustment cost).
- NBER-CES U.S. Manufacturing data set is employed, covering 400+ industries, from 1958 through 2011.

Estimating σ^{ke} and ψ_e

1. Equalizing marginal product of inputs to its prices gives:

$$\Delta \log\left(\frac{s_K}{s_E}\right)_{it} = (1 - \sigma^{ke})\phi_{e \sim k,i} + (1 - \sigma^{ke})\Delta \log\left(\frac{r}{p_e}\right)_{it} + \epsilon_{it}$$

where $\sigma^{ke} = 1/(1-\rho_E)$ is the long-run ES between capital and energy and $\psi_{s\sim k,i}$ is the ESTC in i.

2. And

$$\Delta \log\left(\frac{s_K}{s_L}\right)_{it} = (1 - \sigma^{kl})\phi_{l \sim k,i} + (1 - \sigma^{kl})\Delta \log\left(\frac{r}{w}\right)_{it} + \frac{\sigma^{kl} - \sigma^{ke}}{\sigma^{ke} - 1}\Delta \log\left(1 + \frac{s_E}{s_K}\right)_{it} + \varepsilon_{it}$$

where $\sigma^{kl} = 1/(1-\rho_l)$ is the long-run ES between capital and labor, $\psi_{l\sim k,i}$ is the LBTC.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Estimating β_g and λ_{ig}

3. Taking the first difference of log expenditure gives us estimating equation

$$\Delta \log \chi_{igt} = \frac{1}{1 - \alpha_g} \Delta \lambda_{ig}(E_t) + \frac{\alpha_g}{1 - \alpha_g} \Delta \log(P_{gt}/P_{igt}) + \nu_{igt}$$

Income effect is estimated as the fixed effect, price effect is identified by the variation in relative price changes across industries over time.

Part V

Empirical Results

Results

Figure 2: Variations in Relative Price and Expenditure Growth

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Results I

Figure 3: Variations in Capital-Energy Relative Price and Relative Quantity.

◆□> ◆□> ◆豆> ◆豆> ̄豆 _ のへで

Estimates of σ^{ke} I

Dependent Variable: $\Delta_{\tau} log \left(\frac{s_K}{s_E}\right)_{it}$				
$\overline{\Delta_{\tau} log(P_K/P_E)_{it}}$	0.7600	0.7939	0.2768	0.3862
	(0.0308)	(0.0321)	(0.0657)	(0.0722)
Industry		\checkmark		\checkmark
τ			\checkmark	\checkmark
Obs	4971	4971	4971	4971

Table 1: Capital-Energy Elasticity of Substitution

Estimates of σ^{ke} II

Dependent Variable: $\Delta_{\tau} log \left(\frac{s_K}{s_E}\right)_{it}$					
$\overline{\Delta_{\tau} log(P_K/P_E)_{it}}$	0.9580	1.0429	0.3011	0.4847	
	(0.0516)	(0.0557)	(0.0927)	(0.1096)	
Industry		\checkmark		\checkmark	
τ			\checkmark	\checkmark	
Obs	3191	3191	3191	3191	

Table 2: Capital-Energy Elasticity of Substitution (78-83 onward)

Estimates of $\psi_{e,i}$

Figure 4: Distribution of ψ_{ei} before and after the crises.

Estimates of σ^{kl}

Dependent Variable: $\Delta_{\tau} log \left(\frac{s_K}{s_L} \right)_{it}$					
$\overline{\Delta_{\tau} log(P_K/P_L)_{it}}$	0.3156	0.3908	0.2357	0.3539	
	(0.0376)	(0.0408)	(0.0466)	(0.0527)	
$\Delta_{\tau} log [1 + (s_E/s_K)]_{it}$	-1.3301	-1.3200	-1.2830	-1.2609	
	(0.0397)	(0.0408)	(0.0402)	(0.0414)	
Industry		\checkmark		\checkmark	
τ			\checkmark	\checkmark	
Obs	4971	4971	4971	4971	

Table 3: Capital-Labor Elasticity of Substitution

Table 4: Elasticity of Substitution Between Industries

Dependent Variable: $\Delta_{\tau} log \chi_{it}$				
$\Delta_{\tau} log(P_{it}/P_t)$	0.4200	0.5731	0.4011	0.5625
	(0.0291)	(0.0331)	(0.0296)	(0.0342)
Industry		\checkmark		\checkmark
τ			\checkmark	\checkmark
Obs	4971	4971	4971	4971

Estimates of σ_{β} and $\lambda_i \parallel$

Dependent Variable: $\Delta_{\tau} log \chi_{it}$				
$\Delta_{\tau} log(P_{it}/P_t)$	0.4200	0.4860	0.4011	0.5170
	(0.0291)	(0.0344)	(0.0296)	(0.0354)
Industry		\checkmark		\checkmark
$\lambda_i imes$ Industry		\checkmark		\checkmark
τ			\checkmark	\checkmark
Obs	4971	4971	4971	4971

Table 5: Elasticity of Substitution Between Industries

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○

Part VI

Quantitative Assessment

Heterogeneity Index $\boldsymbol{\Xi}$

Figure 5: Heterogeneity Index: Blue solid capital-energy for θ_i ; Red dashed for gross θ_i

Figure 6: Heterogeneity Index: Blue solid for capital-energy θ_i ; Red dashed for gross θ_i

Price Effect vs. Income Effect

Figure 7: Expenditure: Income Effect versus Price Effect

Conclusion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 - のへの