MACROECONOMICS N. GREGORY MANKIW

Aggregate Demand I: Building the IS-LM Model

Modified by Ming Yi | © 2016 Worth Publishers, all rights reserved

IN THIS CHAPTER, YOU WILL LEARN:

- the IS curve and its relation to:
 - the Keynesian cross
 - the loanable funds model
- the LM curve and its relation to:
 - the theory of liquidity preference
- how the IS-LM model determines income and the interest rate in the short run when P is fixed

Context

Chapter 10 introduced the model of aggregate demand and aggregate supply.

• Long run:

- prices flexible
- output determined by factors of production & technology
- unemployment equals its natural rate

Short run:

- prices fixed
- output determined by aggregate demand
- unemployment negatively related to output

Context

- This chapter develops the *IS-LM* model, the basis of the aggregate demand curve.
- We focus on the short run and assume the price level is fixed (so the SRAS curve is horizontal).
- Chapters 11 and 12 focus on the closedeconomy case. Chapter 13 presents the openeconomy case.

The Keynesian cross

- A simple closed-economy model in which income is determined by expenditure. (due to J. M. Keynes)
- Notation:
 - **I** = planned investment

PE = **C** + **I** + **G** = planned expenditure

Y = real GDP = actual expenditure

Difference between actual & planned expenditure
 = unplanned inventory investment

Elements of the Keynesian cross

consumption function:	$\boldsymbol{C} = \boldsymbol{C}(\boldsymbol{Y} - \boldsymbol{T})$
govt policy variables:	$\boldsymbol{G}=\overline{\boldsymbol{G}}, \boldsymbol{T}=\overline{\boldsymbol{T}}$
for now, planned investment is exogenous:	$oldsymbol{I}=oldsymbol{\overline{I}}$
planned expenditure:	$PE = C(Y - \overline{T}) + \overline{I} + \overline{G}$
equilibrium condition:	
actual expenditure =	planned expenditure
Y =	PE
CHAPTER 11 Aggregate Demand I	

Graphing planned expenditure

Graphing the equilibrium condition

The equilibrium value of income

An increase in government purchases

Solving for ΔY

Y	=	С	+	Ι	+	G	
---	---	---	---	---	---	---	--

- $\Delta \boldsymbol{Y} = \Delta \boldsymbol{C} + \Delta \boldsymbol{I} + \Delta \boldsymbol{G}$
 - = ΔC + ΔG because **I** exogenous
 - = MPC $\times \Delta Y$ + ΔG because ΔC = MPC $\times \Delta Y$

in changes

Collect terms with $\Delta \mathbf{Y}$ on the left side of the equals sign:

 $(1 - MPC) \times \Delta \boldsymbol{Y} = \Delta \boldsymbol{G}$

Solve for
$$\Delta \boldsymbol{Y}$$
:
$$\Delta \boldsymbol{Y} = \left(\frac{1}{1 - \text{MPC}}\right) \times \Delta \boldsymbol{G}$$

equilibrium condition

The government purchases multiplier

Definition: the increase in income resulting from a \$1 increase in *G*.

In this model, the govt purchases multiplier equals

$$\frac{\Delta \boldsymbol{Y}}{\Delta \boldsymbol{G}} = \frac{1}{1 - \text{MPC}}$$

Example: If MPC = 0.8, then

$$\frac{\Delta \boldsymbol{Y}}{\Delta \boldsymbol{G}} = \frac{1}{1-0.8} = 5$$

An increase in *G* causes income to increase 5 times as much!

Why the multiplier is greater than 1

- Initially, the increase in **G** causes an equal increase in **Y**: $\Delta Y = \Delta G$.
- But $\uparrow Y \rightarrow \uparrow C$
 - \rightarrow further $\uparrow Y$
 - \rightarrow further $\uparrow C$
 - \rightarrow further $\uparrow Y$
- So the final impact on income is much bigger than the initial ∆G.

An increase in taxes

Solving for ΔY

$$\Delta \mathbf{Y} = \Delta \mathbf{C} + \Delta \mathbf{I} + \Delta \mathbf{G}$$
eq'm condition in
changes
= $\Delta \mathbf{C}$ **I** and **G** exogenous
= MPC×($\Delta \mathbf{Y} - \Delta \mathbf{T}$)

Solving for
$$\Delta \mathbf{Y}$$
: $(1 - MPC) \times \Delta \mathbf{Y} = -MPC \times \Delta \mathbf{T}$

Final result:

$$\Delta \boldsymbol{Y} = \left(\frac{-\mathsf{MPC}}{1-\mathsf{MPC}}\right) \times \Delta \boldsymbol{T}$$

The tax multiplier

def: the change in income resulting from a \$1 increase in *T*:

$$\frac{\Delta \boldsymbol{Y}}{\Delta \boldsymbol{T}} = \frac{-\mathsf{MPC}}{1-\mathsf{MPC}}$$

If MPC = 0.8, then the tax multiplier equals

$$\frac{\Delta Y}{\Delta T} = \frac{-0.8}{1-0.8} = \frac{-0.8}{0.2} = -4$$

The tax multiplier

...is *negative:*

A tax increase reduces **C**, which reduces income.

...is greater than one (*in absolute value*): A change in taxes has a multiplier effect on income.

... is smaller than the govt spending multiplier: Consumers save the fraction (1 - MPC) of a tax cut, so the initial boost in spending from a tax cut is smaller than from an equal increase in **G**.

NOW YOU TRY Practice with the Keynesian cross

 Use a graph of the Keynesian cross to show the effects of an increase in planned investment on the equilibrium level of income/output.

ANSWERS Practice with the Keynesian cross

The IS curve

def: a graph of all combinations of r and Y that result in goods market equilibrium

i.e. actual expenditure (output) = planned expenditure

The equation for the *IS* curve is:

$$Y = C(Y - \overline{T}) + I(r) + \overline{G}$$

Deriving the IS curve

Why the IS curve is negatively sloped

- A fall in the interest rate motivates firms to increase investment spending, which drives up total planned spending (*PE*).
- To restore equilibrium in the goods market, output (a.k.a. actual expenditure, Y) must increase.

The IS curve and the loanable funds model

(a) The L.F. model

(b) The *IS* curve

Fiscal Policy and the IS curve

- We can use the *IS-LM* model to see how fiscal policy (*G* and *T*) affects aggregate demand and output.
- Let's start by using the Keynesian cross to see how fiscal policy shifts the *IS* curve...

Shifting the IS curve: ΔG

At any value of r, $\uparrow G \rightarrow \uparrow PE \rightarrow \uparrow Y$

...so the *IS* curve shifts to the right.

The horizontal distance of the IS shift equals

$$\Delta \boldsymbol{Y} = \frac{1}{1 - \text{MPC}} \Delta \boldsymbol{G}$$

NOW YOU TRY Shifting the IS curve: $\triangle T$

- Use the diagram of the Keynesian cross or loanable funds model to show how an increase in taxes shifts the IS curve.
- If you can, determine the size of the shift.

ANSWERS Shifting the IS curve: ΔT

At any value of r, $\uparrow T \rightarrow \downarrow C \rightarrow \downarrow PE$

...so the *IS* curve shifts to the left.

The horizontal distance of the *IS* shift equals $\Delta \boldsymbol{Y} = \frac{-MPC}{1-MPC} \Delta \boldsymbol{T}$

The theory of liquidity preference

- Due to John Maynard Keynes.
- A simple theory in which the interest rate is determined by money supply and money demand.

Money supply

The supply of interest real money rate balances is fixed:

 $(\boldsymbol{M}/\boldsymbol{P})^{\boldsymbol{s}} = \boldsymbol{\overline{M}}/\boldsymbol{\overline{P}}$

Money demand

Equilibrium

The interest rate adjusts to equate the supply and demand for money:

$$\overline{M}/\overline{P} = L(r)$$

How the Fed raises the interest rate

CASE STUDY: Monetary Tightening & Interest Rates

- Late 1970s: π > 10%
- Oct 1979: Fed Chairman Paul Volcker announces that monetary policy would aim to reduce inflation
- Aug 1979–April 1980:
 Fed reduces *M/P* 8.0%
- Jan 1983: π = 3.7%

How do you think this policy change would affect nominal interest rates?

Monetary Tightening & Interest Rates, cont.

The effects of a monetary tightening on nominal interest rates

	short run	long run	
model	liquidity preference (Keynesian)	Quantity theory, Fisher effect <i>(Classical)</i>	
prices	sticky	flexible	
prediction	$\Delta i > 0$	$\Delta i < 0$	
actual outcome	8/1979: <i>i</i> = 10.4% 4/1980: <i>i</i> = 15.8%	8/1979: <i>i</i> = 10.4% 1/1983: <i>i</i> = 8.2%	

The LM curve

Now let's put **Y** back into the money demand function:

$$(\boldsymbol{M}/\boldsymbol{P})^{\boldsymbol{d}} = \boldsymbol{L}(\boldsymbol{r},\boldsymbol{Y})$$

The *LM* curve is a graph of all combinations of *r* and *Y* that equate the supply and demand for real money balances.

The equation for the *LM* curve is:

$$\overline{M}/\overline{P} = L(r,Y)$$

Deriving the LM curve

Why the LM curve is upward sloping

- An increase in income raises money demand.
- Since the supply of real balances is fixed, there is now excess demand in the money market at the initial interest rate.
- The interest rate must rise to restore equilibrium in the money market.

How ΔM shifts the LM curve

NOW YOU TRYShifting the *LM* curve

- Suppose a wave of credit card fraud causes consumers to use cash more frequently in transactions.
- Use the liquidity preference model to show how these events shift the LM curve.

ANSWERS Shifting the *LM* curve

The short-run equilibrium

The short-run equilibrium is the combination of *r* and *Y* that simultaneously satisfies the equilibrium conditions in the goods & money markets:

$$Y = C(Y - \overline{T}) + I(r) + \overline{G}$$
$$\overline{M}/\overline{P} = L(r,Y)$$
Equilibrium

interest

rate

LM

The Big Picture

Preview of Chapter 12

In Chapter 12, we will

- use the IS-LM model to analyze the impact of policies and shocks.
- Iearn how the aggregate demand curve comes from *IS-LM*.
- use the *IS-LM* and *AD-AS* models together to analyze the short-run and long-run effects of shocks.
- use our models to learn about the Great Depression.

CHAPTER SUMMARY

- 1. Keynesian cross
 - basic model of income determination
 - takes fiscal policy & investment as exogenous
 - fiscal policy has a multiplier effect on income
- 2. IS curve
 - comes from Keynesian cross when planned investment depends negatively on interest rate
 - shows all combinations of *r* and *Y* that equate planned expenditure with actual expenditure on goods & services

CHAPTER SUMMARY

- 3. Theory of liquidity preference
 - basic model of interest rate determination
 - takes money supply & price level as exogenous
 - an increase in the money supply lowers the interest rate
- 4. LM curve
 - comes from liquidity preference theory when money demand depends positively on income
 - shows all combinations of *r* and *Y* that equate demand for real money balances with supply

CHAPTER SUMMARY

5. *IS-LM* model

 Intersection of *IS* and *LM* curves shows the unique point (*Y*, *r*) that satisfies equilibrium in both the goods and money markets.